摘要
语义分割模型在高分辨率遥感影像中表现良好的关键是训练集和测试集之间域的高度一致。然而,不同数据集之间存在域偏差,包括地理位置、传感器成像方式和天气条件的差异,导致在一个数据集上训练的模型在另一个数据集上预测时准确性会显著下降。域自适应是解决上述问题的有效策略,该文从域自适应模型的角度,基于对抗学习方法提出了一种用于高分辨率遥感图像语义分割任务的无监督域自适应框架。该框架对全局域对齐模块和局部域对齐模块分别融入熵值加权注意力和逐类别域特征聚合机制,缓解源域和目标域之间的域偏差;此外,引入了对象上下文表征(object context representation,OCR)模块和空洞空间金字塔池化(atrous spatial pyramid pooling,ASPP)模块,以充分利用影像中的空间级和对象级上下文信息,并提出了OCR/ASPP双分类器组合策略,以提高分割精度和准确性。实验结果表明,该方法在公开的2个数据集中实现了优越的跨域分割性能,并超过了同类型的其他方法。
The key to the high performance of semantic segmentation models for high-resolution remote sensing images lies in the high domain consistency between the training and testing datasets.The domain discrepancies between different datasets,including differences in geographic locations,sensors’imaging patterns,and weather conditions,lead to significantly decreased accuracy when a model trained on one dataset is applied to another.Domain adaptation is an effective strategy to address the aforementioned issue.From the perspective of a domain adaptation model,this study developed an adversarial learning-based unsupervised domain adaptation framework for the semantic segmentation of high-resolution remote sensing images.This framework fused the entropy-weighted attention and class-wise domain feature aggregation mechanism into the global and local domain alignment modules,respectively,alleviating the domain discrepancies between the source and target.Additionally,the object context representation(OCR)and Atrous spatial pyramid pooling(ASPP)modules were incorporated to fully leverage spatial-and object-level contextual information in the images.Furthermore,the OCR and ASPP combination strategy was employed to improve segmentation accuracy and precision.The experimental results indicate that the proposed method allows for superior cross-domain segmentation on two publicly available datasets,outperforming other methods of the same type.
作者
潘俊杰
慎利
鄢薪
聂欣
董宽林
PAN Junjie;SHEN Li;YAN Xin;NIE Xin;DONG Kuanlin(Faculty of Geosciences and Environmental Engineering,Southwest Jiaotong University,Chengdu 610097,China)
出处
《自然资源遥感》
CSCD
北大核心
2024年第4期149-157,共9页
Remote Sensing for Natural Resources
基金
国家重点研发计划项目“时空知识图谱服务平台与应用验证”(编号:2022YFB3904205)
国家自然科学基金项目“基于弱监督深度学习的高分辨率遥感影像灾后损毁建筑物提取研究”(编号:42071386)
“基于匀质化分解与解析式合成的栅格类别数据尺度效应建模”(编号:41971330)
四川省科技厅基本科研业务费项目“耕地‘非粮化’调查监测成果的知识化服务研究”(编号:2023JDKY0017-3)共同资助。
关键词
高分辨率遥感图像
语义分割
对抗学习
无监督域自适应
high-resolution remote sensing images
semantic segmentation
adversarial learning
unsupervised domain adaptation