期刊文献+

Harnack Inequalities for G-SDEs with Multiplicative Noise

原文传递
导出
摘要 The Harnack inequality for stochastic differential equation driven by G-Brownian motion with multiplicative noise is derived by means of the coupling by change of measure,which extends the corresponding results derived in Wang(Probab.Theory Related Fields 109:417–424)under the linear expectation.Moreover,we generalize the gradient estimate under nonlinear expectation appeared in Song(Sci.China Math.64:1093–1108).
作者 Fen-Fen Yang
出处 《Communications in Mathematics and Statistics》 SCIE CSCD 2024年第2期279-305,共27页 数学与统计通讯(英文)
基金 Supported in part by NNSFC(11801403,11801406).
  • 相关文献

参考文献4

二级参考文献16

  • 1BUCKDAHN Rainer.Inf-convolution of G-expectations[J].Science China Mathematics,2010,53(8):1957-1970. 被引量:1
  • 2Peng S.G-expectation, G-Brownian motion and related stochastic calculus of It o type. . 2006
  • 3Peng S.G-Brownian motion and dynamic risk measure under volatility uncertainty. . 2007
  • 4Soner M,Touzi N,Zhang J.Martingale representation theorem for the G-expectation. . 2009
  • 5Song,Y.Properties of hitting times for G-martingale. http://arxiv.org/abs/1001.4907 . 2010
  • 6H. Mete Soner,Nizar Touzi,Jianfeng Zhang.Martingale Representation The-orem for the G-expectation. . 2010
  • 7Laurent Denis,Mingshang Hu,Shige Peng.Function Spaces and Capac-ity Related to a Sublinear Expectation:Application to G-Brownian Motion Pathes. . 2008
  • 8He S,Wang J,Yan J.Semi-martingales and Stochastic Calculus. . 1992
  • 9S. G. Peng.Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation. Stochastic Processes and Their Applications . 2008
  • 10Ming-shang Hu Shi-ge Peng.On Representation Theorem of G-Expectations and Paths of G-Brownian Motion[J].Acta Mathematicae Applicatae Sinica,2009,25(3):539-546. 被引量:18

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部