摘要
以某型电动汽车在综合工况条件下续航里程需求为目标,基于18650单体锂离子电池设计一组34串36并的动力电池包。为实现对整体动力电池包热管理优化,对其中一个基础并联模组进行热管理分析,散热方式采用强制风冷并行通风;对18650单体电池进行内阻和发热实验,验证基础热源数据的精确性。以Z型电池模组强制散热系统为基础,对基础电池模组构型进行热仿真分析。依次改变汇流腔倾角和分流板高度,发现当汇流腔腔角为7°、分流板高度为9 mm时散热效果最佳,此时并联模组的最高温度及最大温差可满足设计要求。这为动力电池包整体热管理系统完成了其基础模组的优化设计。
Designs a 34-string 36-parallel power pack based on 18650 single-cell lithium-ion batteries with a certain type of electric vehicle under certain comprehensive working conditions as the target range requirement.In order to optimize the overall power pack thermal management,one of the basic parallel modules is analyzed for thermal management,and forced air cooling parallel ventilation is used for heat dissipation.Internal resistance and heat generation experiments are conducted on the 18650 single cell battery to verify the accuracy of the basic heat source data.Based on the forced heat dissipation system of Z-type battery pack,the thermal simulation analysis of the basic battery pack configuration is conducted.It is found that the inclination angle of the sink cavity and the height of the manifold are changed in turn,and that the best heat dissipation effect is achieved when the angle of the sink cavity is 7°and the height of the manifold is 9 mm,at which time the maximum temperature and the maximum temperature difference of the parallel module can meet the design requirements,thus completing the optimized design of the basic module for an overall thermal management system for the power pack.
作者
马之辉
李兵兵
陈南
MA Zhihui;LI Bingbing;CHEN Nan(Automotive Engineering Department of Pujiang Institute,Nanjing Tech University,Nanjing 211134,China;School of Mechanical Engineering,Southeast University,Nanjing 211189,China)
出处
《机械制造与自动化》
2024年第6期168-173,179,共7页
Machine Building & Automation
关键词
CFD仿真
热管理系统
锂离子电池模组
强制风冷
CFD simulation
thermal management system
lithium-ion battery pack
forced air cooling