摘要
Photoelectrochemical hydrogen evolution reaction(HER)is taken into account as an alternative to effective hydrogen production,emphasizing the importance of catalysts.The magnetism of catalysts could modulate the adsorption of the H atom and further enhance the HER activity.Herein,doping the double transition metal atoms on SnS_(2) nanosheet(TM_(2)@SnS_(2))to form the efficient magnetic catalyst is proposed to explore the spin magnetic effect on the HER performance.By performing first-principles calculations,nonmagnetic V_(2)@SnS_(2) is proved to be the candidate of the HER catalyst;nevertheless,the HER activities of antiferromagnetic and ferromagnetic V_(2)@SnS_(2) are relatively inferior due to the spin-induced charge redistribution.Meanwhile,machine learning analysis shows the absolute importance of the electronic structure of TM dopants and surrounding S ligands,and the HER activity could be predicted by the modified band centers of S-3p_(z) and TM-d.Furthermore,the proof-of-concept experiment has substantiated the above theoretical predictions by significantly increasing liner sweep voltammetry and photocurrent with applied magnetic field.This work provides a new avenue for uncovering the spin catalytic mechanism and the exploration and design of efficient HER catalysts.
基金
supported by the National Natural Science Foundation of China(51972227)。