摘要
智能化电网作业现场违章识别是降低作业安全风险与现场管控成本的关键,提出了基于人工智能的电网作业现场违章识别技术,通过智能化违章识别技术对存在的违章行为发出警告。该技术在YOLOv5上增加了检测层和注意力模块CBAM,并采用BiFPN层替代Concat层,通过消融实验验证所提出的识别技术具有更高的识别精度。将提出的现场违章识别方法应用于实际的电网作业现场,结果表明其可以在复杂的环境下精准识别电网作业现场违章情况,为电网作业现场的安全管理与控制提供了保障。
Intelligent site violation identification of power grid is the key to reduce operation safety risk and site control cost.An artificial intelligence-based site violation identification technology of power grid was proposed,and the existing violation behavior was warned through the intelligent violation identification technology.In this technology,detection layer and attention module CBAM were added to YOLOv5,and BiFPN layer was used to replace Concat layer,and the proposed recognition technology had higher recognition accuracy through ablation experiments.The proposed method was applied to the actual power grid operation site,and the results showed that it could accurately identify the violation situation in the complex environment,which provides a guarantee for the safety management and control of the power grid operation site.
作者
钱涛
孙浩
邹帅
钟方伟
韩冰
QIAN Tao;SUN Hao;ZOU Shuai;ZHONG Fangwei;HAN Bing(Department of research and development,Xinjiang Information Industry Co.,Ltd.,Urumqi 830011,China)
出处
《粘接》
CAS
2024年第12期158-161,共4页
Adhesion
关键词
人工智能
电网作业现场
智能化违章识别技术
YOLOv5
artificial intelligence
power grid operation site
intelligent violation identification technology
YOLOv5