摘要
针对车载/船载、空间等小型模块化核反应堆中子屏蔽设计中的减重降体需求,以碳化硼、铁、钨、铅、氧化铋、聚乙烯和NBS混凝土均匀混合的复合材料为例,开展材料组分和厚度的多目标优化模拟设计研究。基于MCNP5模型模拟计算结果训练自适应RBF神经网络剂量当量预测模型,预测相对偏差在-2%~2%之间。利用基于参考点的非支配排序遗传算法NSGA-Ⅲ对屏蔽材料质量、体积和屏蔽性能3个目标函数进行优化,分析Pareto最优解集,验证优化方法的可行性,为中子屏蔽材料在实际工程应用中的的多目标优化设计提供方法和理论指导。
In order to optimize the design of neutron shielding materials,a study is carried out with a homogeneous mixture of composite materials consisting of boron carbide,iron,tungsten,lead,bismuth oxide,polyethylene and NBS concrete.The evolutionary multi-objective optimization design of material composition and thickness is performed.Based on the simulation results of MCNP5,an adaptive RBF neural network dose prediction model is trained.The reference point-based non-dominated sorting genetic algorithm NSGA-Ⅲ is used to optimize three objective functions:weight,volume,and shielding property of the shielding material.The Pareto-optimal solution set is analyzed to verify the feasibility of the optimization method and provide methods and theoretical guidance for the multi-objective optimization design of neutron shielding materials.
作者
姬俊杰
李国栋
韩毅
池晓淼
沈华亚
孙岩松
陈志伟
JI Junjie;LI Guodong;HAN Yi;CHI Xiaomiao;SHEN Huaya;SUN Yansong;CHEN Zhiwei(China Institute for Radiation Proctection,Taiyuan 030006;Shanxi Key Laboratory for Radiation Safety and Protection,Taiyuan 030006)
出处
《辐射防护》
CAS
CSCD
北大核心
2024年第S01期74-80,共7页
Radiation Protection
关键词
多目标优化
中子屏蔽
蒙特卡罗
RBF神经网络
multi-objective optimization
neutron shielding
Monte Carlo
RBF neural network