期刊文献+

Seed Priming Improves Chilling Stress Tolerance in Rice (Oryza sativa L.) Seedlings

下载PDF
导出
摘要 Chilling is one of the major abiotic stresses for plants,especially for rice cultivation.Many essential metabolic processes for growth and development are temperature-dependent.In that case,reducing the negative effects of cold stress using exogenous chemicals is a possible option.Therefore,the current study examined the effects of pre-sowing seed treatment with different chemicals,viz.hydrogen peroxide(H_(2)O_(2)),salicylic acid(SA),calcium chloride(CaCl_(2)),thiourea(TU),and citric acid(CA)on the germination of rice seeds(cv.BRRI dhan28)under chilling environments.Rice seeds were soaked in distilled water(control),10 mM CA,2 mM SA,10 mM CaCl_(2),10 mM H_(2)O_(2),and 10 mM TU solutions for 24 h.After that,seeds were exposed to chilling stress by incubating at 4±1℃ for 8 h,followed by at 25±2℃ for 16 h for 7 days.Exposure to chilling stress significantly reduced thefinal germination percent(13.6%),germination rate index(36.0%),coefficient of the velocity(25.0%),shoot fresh weight(44.4%),and root fresh weight(60.5%).Moreover,chilling induced oxidative damage and reduced the activity of antioxidant enzymes(catalase and ascorbate peroxidase).In contrast,treatments with H_(2)O_(2),SA,CaCl_(2),TU,and CA considerably enhanced germination indices and seedling growth compared to chilling stress condi-tions.The study showed that priming with H_(2)O_(2),SA,CaCl_(2),TU,and CA significantly boosted antioxidant enzyme activities and reduced MDA and H_(2)O_(2) contents in chilling-stressed rice plants,indicating less oxidative stress and improved tolerance.Principal component analysis showed that among these priming agents,H_(2)O_(2),SA,and CA are most effective in chilling stress mitigation.Therefore,using seed-treating chemicals to combat the effect of chilling stress can help rice seedlings grow better in the winter season.
出处 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第11期3013-3027,共15页 国际实验植物学杂志(英文)
  • 相关文献

参考文献1

二级参考文献1

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部