期刊文献+

基于改进YOLACT的堆叠零件实例分割算法

Instance Segmentation of Cluttered Mechanical Parts Based on Improved YOLACT
下载PDF
导出
摘要 为了解决堆叠环境下零件实例分割精度差的问题,提出了一种改进YOLACT算法。通过在主干网络中C3和C4层引入多级特征融合与通道注意力机制模块(MLCA),优化了特征提取的精度。为了在保证图像同时获取多感受野信息,采用上下文特征金字塔模块(AC-FPN)结构替代传统FPN金字塔,获取更多感受野,以准确完成预测。通过自制堆叠零件数据集完成网络训练与实验。对比实验表明,改进后的YOLACT算法在未明显提升运行时间的基础上,相较原算法表现出更优的检测与分割效果。 In order to address the issue of poor instance segmentation accuracy for parts instances in a cluttered environment,an improved YOLACT algorithm is proposed.Multi-level feature fusion and channel attention mechanism modules(MLCA)are introduced into the C3 and C4 layers of the backbone network,optimizing the precision of feature extraction.At the same time,to ensure the image acquires multi-scale field-of-view information,an advanced contextual feature pyramid module(AC-FPN)structure replaces the conventional FPN pyramid to capture broader receptive fields,facilitating accurate prediction.The network was trained and tested using a custom-made dataset of stacked parts.Comparative experiments demonstrate that the improved YOLACT algorithm,without significantly increasing the run time,exhibits superior detection and segmentation performance compared to the original algorithm.
作者 张笑尘 晁永生 李豪玉 周方圆 李学玮 王传钊 ZHANG Xiaochen;CHAO Yongsheng;LI Haoyu;ZHOU Fangyuan;LI Xuewei;WANG Chuanzhao(School of Intelligent Manufacturing Modern Industry,Xinjiang University,Urumqi 830017,China)
出处 《组合机床与自动化加工技术》 北大核心 2024年第12期35-40,共6页 Modular Machine Tool & Automatic Manufacturing Technique
基金 国家自然科学基金项目(52365065)。
关键词 堆叠零件 实例分割 YOLACT MLCA AC-FPN cluttered parts instance segmentation YOLACT MLCA AC-FPN
  • 相关文献

参考文献3

二级参考文献32

  • 1贠明凯,刘力.数字实时成像(DR)与X射线胶片成像对比分析[J].CT理论与应用研究(中英文),2005,14(3):13-17. 被引量:27
  • 2陶唐飞,韩崇昭,吴艳琪,康欣.Motion estimation based on an improved block matching technique[J].Chinese Optics Letters,2006,4(4):208-210. 被引量:6
  • 3张力,肖薇薇,钱恭斌,纪震.基于Krawtchouk不变矩的仿射攻击不变性局部水印算法[J].电子学报,2007,35(7):1403-1408. 被引量:11
  • 4KADIR H A, ARSHAD M R. Features detection and matching for visual simuhaneous localization and mapping (VSLAM) [ C ]. IEEE Conference on Control System, Computing and Engineering (ICCSCE), 2013,40-45.
  • 5BAY H, TUYTELAARS T, VAN GOOL L, et al. Surf: Speeded-up robust features (SURF) [ M]. Computer Vi- sion-ECCV, 2006: 404417.
  • 6MIKOLAJCZYK K, SCHMID C. A performance evalua- tion of local descriptors [ J ]. IEEE Transactions on Pat- tern Analysis and Machine Intelligence, 2005, 27 (10) : 1615-1630.
  • 7VALGREN C, LILIENTHAL J A. SIFT, SURF & sea- sons: Appearance-based long-term localization in outdoor environments [ J]. Robotics and Autonomous Systems, 2010, 58(2) :149-156.
  • 8WANG K, CHENG B, MA L, et al. Multi-source remote sensing image registration based on normalized SURF al- gorithm[J]. Computer Science and Electronics Engineer- ing (ICCSEE), 2012( 1 ) :373-377.
  • 9KIM H J, LEE J Y, KIM J H, et al. Object recognition and pose estimation using KLT control [ J l- Automation and Systems (ICCAS), 2012 : 214-217.
  • 10JIANG Z T, WANG Q, CUI Y. A fast method for feature matching based on SURF[ J]. Intelligent Science and In- telligent Data Engineering, 2012:374-381.

共引文献156

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部