期刊文献+

Bidirectional position attention lightweight network for massive MIMO CSI feedback

原文传递
导出
摘要 In frequency division duplex(FDD)massive multiple-input multiple-output(MIMO)systems,a bidirectional positional attention network(BPANet)was proposed to address the high computational complexity and low accuracy of existing deep learning-based channel state information(CSI)feedback methods.Specifically,a bidirectional position attention module(BPAM)was designed in the BPANet to improve the network performance.The BPAM captures the distribution characteristics of the CSI matrix by integrating channel and spatial dimension information,thereby enhancing the feature representation of the CSI matrix.Furthermore,channel attention is decomposed into two one-dimensional(1D)feature encoding processes effectively reducing computational costs.Simulation results demonstrate that,compared with the existing representative method complex input lightweight neural network(CLNet),BPANet reduces computational complexity by an average of 19.4%and improves accuracy by an average of 7.1%.Additionally,it performs better in terms of running time delay and cosine similarity.
出处 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2024年第5期1-11,共11页 中国邮电高校学报(英文版)
基金 supported by the National Natural Science Foundation of China(12005108) the Shandong Provincial Natural Science Foundation Youth Project(ZR2020QF016) the National Natural Science Foundation of China(U2006222)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部