摘要
为保障国有企业物资线上采购业务中的数据安全性与隐私性,防范数据泄露风险,提出一种国有企业物资线上采购业务数据隐私保护方法。首先,构建位置搜索树,计算数据的敏感度,同时分析国有企业物资线上采购业务数据之间的关系,得到预处理结果,构建数据体系;其次,计算聚类的数据密度,提取采购业务数据特征;最后,设置风险预警等级,对审批流程进行严格的合规性管理,实现采购业务数据隐私保护。试验结果表明,研究方法能够显著降低数据泄露的风险,并促进业务的高效合规运行。
In order to ensure the data security and privacy by the online procurement of materials by state-owned enterprises and prevent the risk of data leakage,this paper puts forward a data privacy protection method for online procurement of materials by state-owned enterprises.Firstly,the location search tree is constructed to calculate the sensitivity of data,and at the same time,the relationship between the data of state-owned enterprises material online procurement business is analyzed to get the preprocessing results,and the data system is constructed.On this basis,the data clustering density is calculated to extract the characteristics of procurement business data.Finally,the risk warning level is set,and the approval process is strictly managed to protect the privacy of procurement business data.Experimental results show that the research method can significantly reduce the risk of data leakage and promote the efficient and compliant operation of the business.
作者
张琛
ZHANG Chen(China Coal Geology Bureau,Zhejiang Coal Geology Bureau,Hangzhou 310000,China)
出处
《技术与市场》
2024年第12期38-42,47,共6页
Technology and Market
关键词
国有企业
物资采购
线上采购业务
数据隐私保护
state-owned enterprise
material procurement
online procurement business
data privacy protection