期刊文献+

Future of Education with Neuro-Symbolic AI Agents in Self-Improving Adaptive Instructional Systems

原文传递
导出
摘要 This paper proposes a novel approach to use artificial intelligence(Al),particularly large language models(LLMs)and other foundation models(FMs)in an educational environment.It emphasizes the integration of teams of teachable and self-learning LLMs agents that use neuro-symbolic cognitive architecture(NSCA)to provide dynamic personalized support to learners and educators within self-improving adaptive instructional systems(SIAIS).These systems host these agents and support dynamic sessions of engagement workflow.We have developed the never ending open learning adaptive framework(NEOLAF),an LLM-based neuro-symbolic architecture for self-learning AI agents,and the open learning adaptive framework(OLAF),the underlying platform to host the agents,manage agent sessions,and support agent workflows and integration.The NEOLAF and OLAF serve as concrete examples to illustrate the advanced AI implementation approach.We also discuss our proof of concept testing of the NEOLAF agent to develop math problem-solving capabilities and the evaluation test for deployed interactive agent in the learning environment.
出处 《Frontiers of Digital Education》 2024年第2期198-212,共15页 数字教育前沿(英文)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部