摘要
液压柔性机械臂受摩擦力、重力以及牵引力等多种动力势能影响,导致运动特征的变动关系复杂,定位控制误差较大。为此,提出一种基于RBF神经网络的末端定位控制方法。建立RBF神经网络架构,采用高斯函数作为输入层和模糊层的连接函数,以摩擦力、牵引力、重力等值作为导入因子,分析其动力学特性。以此为约束,设计非线性的定位控制补偿方法,通过多次迭代调整平衡阈值实现高质量的定位控制。实验结果证明,所提方法定位控制精准度较高,控制后的机械臂运动旋转角度以及垂直角度曲线变化与目标值基本一致,控制效果表现优异。
The hydraulic flexible robotic arm is affected by various dynamic potential energies such as friction,gravity,and traction,resulting in complex changes in motion characteristics and significant positioning control errors.Therefore,a terminal positioning control method based on RBF neural network is proposed.Establish an RBF neural network architecture,using Gaussian functions as the connection function between the input layer and the fuzzy layer,and introducing factors such as friction,traction,and gravity to analyze its dynamic characteristics.Based on this constraint,a nonlinear positioning control compensation method is designed to achieve high-quality positioning control by adjusting the balance threshold through multiple iterations.The experimental results demonstrate that the proposed method has high accuracy in positioning control,and the changes in the motion rotation angle and vertical angle curve of the controlled robotic arm are basically consistent with the target values,demonstrating excellent control performance.
作者
丁心安
李美莹
DING Xin’an;LI Meiying(School of Institute of Technology,Xi’an Siyuan University,Xi’an 710038,China)
出处
《自动化与仪表》
2024年第12期47-50,55,共5页
Automation & Instrumentation
关键词
RBF神经网络
液压柔性机械臂
末端定位控制
高斯函数
势能因子
RBF neural network
hydraulic flexible robotic arm
end positioning control
Gaussian function
potential energy factor