摘要
钛合金因其卓越的性能在航空航天和生物医学领域得到广泛应用,而增材制造技术为解决传统加工中的材料浪费和复杂结构制造问题提供了可行途径。然而,钛合金增材制造过程中高冷却速率和高温度梯度常导致粗大柱状β晶粒和长连续晶界α相的形成,限制了其性能。研究表明通过添加微量元素粉末的方法,可得到细小的等轴晶组织,并调节晶粒尺寸范围。基于此,本文综述了在钛合金增材制造过程中,通过添加微量元素粉末来细化晶粒的研究进展。以溶质和晶核两种机理为基础,全面概述了添加不同类型元素对晶粒细化的研究,旨在为优化钛合金增材制造工艺提供参考。
Titanium alloys are widely used in aerospace and biomedical fields due to their excellent performance,and additive manufacturing technology provides a feasible approach to solve material waste and complex structural manufacturing problems in traditional processing.However,high cooling rates and high temperature gradients during the additive manufacturing of titanium alloys often lead to the formation of coarse columnarβgrains and elongated continuous grain boundaryαphases,which limits their performance.Research has shown that by adding trace elements in powder form,fine equiaxed crystal structures can be obtained and the grain size range can be adjusted.Based on this,this article reviews the research progress on refining grain size by adding trace element powders in the additive manufacturing process of titanium alloys.Based on the two mechanisms of solute and nucleation,this paper comprehensively summarizes the research on the effect of adding different types of elements on grain refinement,aiming to provide reference for optimizing the additive manufacturing process of titanium alloys.
作者
白帅军
肖笑
王雪晴
马宁
张柯柯
古免久弥
BAI Shuai-jun;XIAO Xiao;WANG Xue-qing;MA Ning;ZHANG Ke-ke;KOMEN Hisaya(School of Material Science and Engineering,Henan University of Science and Technology,Luoyang 471023,China;Provincial and Ministerial Co-construction Collaborative Innovation Center of Nonferrous New Materials and Advanced Processing Technology,Luoyang 471023,China;Joining and Welding Research Institute Osaka University,Osaka 567-0047,Japan)
出处
《材料热处理学报》
CAS
CSCD
北大核心
2024年第12期1-9,共9页
Transactions of Materials and Heat Treatment
基金
河南省科技研发计划联合基金项目(222103810035)
龙门实验室前沿探索课题(LMQYTSKT004)
河南省本科高校青年骨干教师(2023GGJS044)
河洛青年人才托举工程(2023HLTJ06)。
关键词
钛合金
晶粒细化
微观结构
增材制造
titanium alloy
grain refinement
microstructure
additive manufacturing