期刊文献+

弱连续条件下的九参三角形板元 被引量:1

THE 9-PARAMETERS TRIANGULAR PLATE ELEMENT IN WEAK FORM
下载PDF
导出
摘要 首先对薄板弯曲平衡方程的弱形式进行了推导,导出保证单元收敛的弱协调条件,即三角形顶点函数值连续和三边的法向导数积分连续这两个条件;对比拟协调元、广义协调元和双参数法中所使用的3个积分连续条件,本条件更弱;再对这3个积分协调条件的构成方法进行了总结和分析,现有采用积分连续条件构造的有限元大都采用了这些构成方法.采用弱协调条件构造有限元,比原来的构造范围更广,井以此构造出几种单元作为算例.采用这种构成法还可构造多种单元,它们都具有采用最小势能原理法构成有限元的简便的优点,并在任意网格下收敛到真解. The equilibrium equations for the thin plate bending problem in weak form are presented in this paper, and proposed the weak conforming conditions assured the convergence, that is, the displacement continuity at the triangle vertex and the normal derivative integral continuity along the boundary of the triangular element. The proposed weak continuity condition seems much weaker compared with the three kinds of integral continuity conditions which are used in the quasi-conforming element, the generalized element and double set parameter method. The constructed conditions of the above three integral conforming methods have been summarized and analyzed in this paper, the common used finite elements which satisfy the integral continuity conditions are mostly based on the above method. To construct finite elements by the weak conforming condition presented in this paper, we will have a more extensive range of choices, and several elements are constructed as numerical examples. More types of finite element can be constructed using this method, which possess the advantages of simplicity and convenience, just as the common used finite element based on the principle of minimum potential energy, and can converge to the analytical solution in the limit of arbitrary mesh sub-divisions.
出处 《力学学报》 EI CSCD 北大核心 2002年第6期924-934,共11页 Chinese Journal of Theoretical and Applied Mechanics
关键词 九参三角形板元 弱连续 有限元法 薄板弯曲 广义协调元 双参数法 9 parameters triangular plate element, weak continuity, finite element method, thin plate bending, generalized conforming element, double set parameter method
  • 相关文献

参考文献5

二级参考文献23

  • 1石钟慈,计算数学,1988年,10卷,1期,41页
  • 2龙驭球,土木工程学报,1985年,1卷,1页
  • 3张鸿庆,应用数学和力学,1985年,6卷,1期,41页
  • 4石钟慈,J Comput Math,1984年,2卷,279页
  • 5张鸿庆,大连理工大学学报,1982年,21卷,3期,11页
  • 6陈万吉,大连理工大学学报,1980年,19卷,2期,37页
  • 7唐立民,大连理工大学学报,1980年,19卷,2期,19页
  • 8石钟慈,计算数学
  • 9石钟慈,Comput Meth Appl Mech,1987年,62卷,71页
  • 10石钟慈,Math Comput,1987年,49卷,391页

共引文献89

同被引文献13

  • 1王勖成,邵敏.有限单元法基本原理和数值方法[M].第二版.北京:清华大学出版社,1997.
  • 2Timoshenko S, Woinowsk S. Theory of plates and shells [M]. 2nd ed. McGraw-Hill Book Company, Inc, 1959.
  • 3翁志远.梁板壳静动力学译文集(I)[M].上海:同济大学出版社,1986.
  • 4Clough R W, Tocher J L. Finite element stiffness matrices for analysis of plate bending [C]. Proceedings of the Conference on Matrix Methods in Structural Mechanics, in AFFDL TR 66-80, 1966: 515-545.
  • 5Bazeley G P, Cheung Y K, Irons B M, Zienkiewicz 0 C. Triangular elements in plate bending, conforming and non-conforming solutions [C]. Proceedings of 1st Conference on Matrix Methods in Structural Mechanics, Wright-Patterson AFB, 1965: 547- 576.
  • 6Batoz J, Bathe K, Ho L. A study of three-node triangular plate bending elements [J]. International Journal for Numerical Methods in Engineering, 1980, 15(12): 1771-1812.
  • 7Batos J. An explicit formulation for efficient triangular plate-bending element [J]. International Journal for Numerical Methods in Engineering, 1982, 18(7): 1077- 1089.
  • 8Soh A K, Ling C. An improved discrete Kirchhoff triangular element for bending, vibration and buckling analyses [J]. European Journal of Mechanics A-Solids, 2000, 19(5): 891-910.
  • 9Ting E C, Shih C, Wang Y K. Fundamentals of a vector form intrinsic finite element: Part Ⅰ. Basic procedure and a plane frame element [J]. Journal of Mechanics, 2004, 20(2): 113- 122.
  • 10Ting E C, Shih C, Wang Y K. Fundamentals of a vector form intrinsic finite element: Part Ⅱ. Plane solid elements [J]. Journal of Mechanics, 2004, 20(2): 123-132.

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部