摘要
讨论了精细直接积分法中积分方法选择问题。通过理论推导和数值试验,指出为保持精细算法的高精度,应根据荷载的性质选择合适的积分方法,并得出激励为多项式形式时应选择代数精度高的积分方法的结论,指出科茨积分、高斯积分是保持精细算法高精度的较好积分方法。
The selection of numerical integration method of precise direct integration is discussed in this paper. Theoretical analysis and numerical results show that the feasibility of numerical integration method depends on the characteristics of loads. It is suggested that a numerical integration method of high algebraic accuracy be used if the load can be expressed in a polynomial form. It is shown that Cotes formula and Gauss formula are two effective integration methods for precise algorithm.
出处
《工程力学》
EI
CSCD
北大核心
2002年第6期115-119,共5页
Engineering Mechanics
基金
国家自然科学基金资助项目(19902001)
教育部优秀青年教师资助计划项目(人教司[2001]39号)