期刊文献+

基于神经网络方法的极化雷达地表参数反演 被引量:15

Polarimetric SAR Surface Parameters Inversion Based on Neural Network
下载PDF
导出
摘要 人工神经网络(Artificial Neural Network)是一个由独立处理单元以一定拓扑结构高度连接而成的并行分布式信息处理结构,适于解决各种非线性问题。积分方程(Integrated Equation Model)单散射模型可模拟各种地表参数条件下裸露地表后向散射系数。以IEM为基础生成训练数据,用L波段和C波段SIR-C HH,VV极化单散射后向散射系数数据为神经网络输入,通过后向反馈(BP)神经网络模型可同时反演得到裸露地表条件下地表介电常数、地表相关长度和均方根高度等地表参数。 Surface parameters inversion by using Polarimetric SAR includes the inversion of the soil surface permeability , correlation length and RMS height. The retrieval of scattering parameters can be viewed as a mapping problem from the domain of measured signals to the range of surface/medium characteristics that quantify the observed medium. To date, parameter inversion has been based largely on empirical models. Empirical models have usually avoided the nonuniqueness problem by limiting the validity of the model to a single parameter and a narrow range. This limit on the range of validity requires that multiple empirical models be created-one model for each parameter. In this study, the Spaceborn Imaging Radar SIR-C data at L and C band was used to perform the inversion of bare surface parameters. A BP neural network based on IEM model was developed to carry out the inversion, and a test method was also developed. The combination of a scattering model (IEM) and NN makes it possible to perform inversion with higher accuracy and in real time. Backscat-tering coefficients computed from the model inverted surface parameters was proved to be good, compared with the real backscattering coefficients from radar image.
出处 《遥感学报》 EI CSCD 北大核心 2002年第6期451-455,共5页 NATIONAL REMOTE SENSING BULLETIN
基金 国家自然科学基金重点项目(49989001) 国家863计划项目(2001AA132040) 中国科学院知识创新工程项目(KZCX2-312)资助。
关键词 极化雷达 积分方程模型 BP神经网络 地表参数反演 微波遥感 土壤水分 IEM model polarimetric SAR neural network surface parameters inversion
  • 相关文献

参考文献9

  • 1[1]Evans D.L,Farr T G,Van Zyl J J.Estimates of Surface Roughness Derived from Synthetic Aperture Radar(SAR)Data[J].IEEE Trans Geosci and Remote Sensing,1992,30(2):382-389
  • 2[2]Zielinska K D Y I et al.Various Approaches for Soil Moisture estimates Using Remote Sensing [A].IGARSS [C].2001.
  • 3[3]Oh Y Sarabandi,K Ulaby F T.An Empirical Model and an Inversion Technique for Radar Scattering from Soil Surfaces[J].IEEE Trans.Geosci.and Remote Sensing,1992,30(2):370-381.
  • 4[4]Dubois P C,Van Zyl J J,Engman, T.Measuring Soil Moisture with Imaging Radars[J].IEEE Trans.Geosci.and Remote Sensing,1995,33.(4):915-926.
  • 5[5]Shi J C,Wang J,Hsu, A Y et al. Estimation of Bare Surface Soil Moisture and Surface Roughness Parameter Using L-band SAR Image Data[J].IEEE Trans.Geosci and Remote Sensing,1997,35(5):1254-1265.
  • 6[6]Fung A.K,Li Z Q,Chen K S.Backscattering from a Randomly Rough Dielectric Surface[J].IEEE Trans.Geosci.and Remote Sensing,1992,30(2):356-369.
  • 7[7]Dawson M S,Fung A K,Manry M T.Surface Parameter Retrival Using Fast Learning Neural Networks[J].Remote Sensing Reviews,1993,7:1-18.
  • 8[8]Fung A K.Microwave Scattering and Emission Models and Their Applications[M].Artech House,Boston.London,1990.
  • 9[9]Van Zyl J J.Application of Cloude's Target Decomposition Theorem to Polarimetric Imaging Radar Data[J].Radar Polarimetry,1992,1748:184-191.

同被引文献161

引证文献15

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部