期刊文献+

全方向自适应动态窗口SAR斑点噪声抑制算法 被引量:1

All Direction Auto-adaptive Dynamic Window filter for Noise Suppression in SLC SAR Image
下载PDF
导出
摘要 有效地抑制或消除斑点噪声是SAR图像地学应用的前提。通过基于单视数SAR图像的Speckle统计特性和已发展的空间滤波算法分析,发展了一种改进的全方向动态窗口自适应SAR噪声滤波算法。该算法对处理的每一个像元可按图像边界细节划分为需要的全方向子窗口,利用相对标准差判断滤波窗口及子窗口内斑点噪声及边缘信息的存在情况,可实现滤波窗口大小动态调整和窗口内参加滤波像素的自适应选择。对ERS SAR SLC图像试验结果表明,该算法对单视数SAR图像具有较强的Speckle抑制能力,且可较好地保持图像的纹理边界细节信息,有一定的实用价值。 To smooth coherent speckle noise and preserve edge information in SLC SAR images as precise as possible, a new algorithm called all direction auto-adaptive dynamic window filtering method based on coherent speckle statistic characteristic and analysis of spatial filtering algorithms for SAR image, is developed in this paper. For every processing pixel the filtering window is divided into mutually exclusive all direct sub-windows according to the complexity of image texture and edge existence. Local relative standard deviation is used to determine whether local filtering window area is homogeneous. Kuan filter and a 3 x 3 directive operator are incorporated to process the SAR image. The proposed method can auto-adaptively modulate its filtering window size and selection of filtering pixels. The developed method is applied to a single-look ERS SAR image. Experimental result shows that the performance of the method is satisfactory in both speckle suppression and preservation of image details.
出处 《遥感学报》 EI CSCD 北大核心 2002年第6期464-469,共6页 NATIONAL REMOTE SENSING BULLETIN
基金 国家自然科学基金项目(49989001) 中国科学院知识创新工程"数字地球基础理论研究"(KZCX2-312)资助项目。
关键词 合成孔径雷达 斑点噪声 动态窗口 自适应滤波 遥感图像处理 SAR noise all direction dynamic window auto-adaptive filter
  • 相关文献

参考文献4

  • 1徐新,廖明生,朱攀,卜方玲.单视数SAR图像Speckle滤波方法的研究[J].武汉测绘科技大学学报,1999,24(4):312-316. 被引量:17
  • 2唐伶俐 藩习哲.星载SAR图像斑点噪声消除方法效果的比较研究.星载SAR图像处理[M].北京:科学出版社,1996..
  • 3何剑峰.合成孔径雷达图像处理及在土壤水分监测中的应用研究.中国科学院遥感应用研究所硕士学位论文[M].北京,1995..
  • 4张大力 郭华东.方向溶解算子在平滑雷达图像斑点噪声中的应用.雷达图像分析及地质应用[M].北京:科学出版社,1991..

二级参考文献4

共引文献16

同被引文献17

  • 1郭华东.雷达对地观测技术与作用[J].遥感技术与应用,1994,9(4):58-60. 被引量:1
  • 2郭华东.航天多波段全极化干涉雷达的地物探测[J].遥感学报,1997,1(1):32-39. 被引量:13
  • 3Webb A R.统计模式识别(第二版).北京:电子工业出版社,2004:342-346.
  • 4Yu Q Y, Moloney C, Williams F M. SAR Sea-ice Texture Classification using Discrete Wavelet Transform Based Methods//2002 IEEE International Geoscience and Remote Sensing Symposium. Toronto, Ontario, Canada : IEEE, 2002 : 3041-3043.
  • 5Scheuchl B, Caves R, Cumming I, et al. Automated sea ice classification using spaceborne polarimetric SAR data//IEEE International Symposium Geoscience and Remote Sensing. Sydney, NSW: IEEE, 2001 : 3117-3119.
  • 6Manore M J, Flett D G, De Abreu R A, et al. Multi-polarization SAR data for operational ice monitoring//IEEE 2001 International Geoscience and Remote Sensing Symposium. Sydney, NSW: IEEE, 2001: 1246-1248.
  • 7Wakabayashi H, Matsuoka T, Nakamura K, et al. Polarimetric characteristics of sea ice in the sea of Okhotsk observed by airborne L-band SAR. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42 (11 ) : 2412-2425.
  • 8Geldsetzer T, Van der Sanden J J, Drouin H. Advanced SAR applications for Canada's river and lake ice//2011 IEEE International Geoseienee and Remote Sensing Symposium (IGARSS). Vancouver, BC : IEEE, 2011 : 3168-3170.
  • 9Van der Sanden J J, Dronin H. Satellite SAR Observations of River Ice Cover: A RADARSAT-2 (C-band) and ALOS PALSAR (L-band) Compari- son//CGU HS Committee on River Ice Processes and the Environment. Winnipeg Manitoba, 2011 : 179-197.
  • 10Eriksson L, Drinkwater M, Holt B, et al. SIR-C polarimetrie radar results from the Weddell Sea, Antarctica//1998 IEEE Internstional Geoseienee and Remote Sensing Symposium Proceedings, Seattle, WA: IEEE, 1998: 2222-2224.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部