期刊文献+

用于3D生物医学图象边缘检出的一种新零交叉算法

A Novel Method of Zero Cross for 3D Biomedical Image Edge Detection
下载PDF
导出
摘要 在三维生物医学图象分割中 ,Marr算法的缺点是当模板较大时运算速度很慢 .Haralick算法的缺点是曲面拟合系数和方向导数的方向较难确定 .对此 ,作者提出了一种新的零交叉算法 .它是先对图象进行对称二阶微分运算 ,然后由平面拟合检出过零点 .其优点是模板较大时运算速度比Marr算法快 。 In image processing and recognition, zero crossing is a good method for image edge detection. The common methods of zero crossing are Marr and Haralick algorithms. In 3D biomedical image segmentation,the disadvantage of Marr is low speed when a large kernel is used. The disadvantage of Haralick is the difficulty for determining the coefficients of the surface fitting and the orientation of the directional second order derivation. For this reason, the authors propose a new method of zero crossing. In this method, a symmetric second order derivation is first performed. Then a plane fitting is performed to detect zero crossing pixels. The advantage of our method is that the speed is faster than Marr when the kernel is large and the plane fitting can reduce noise.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第5期851-856,共6页 Journal of Sichuan University(Natural Science Edition)
基金 国家自然科学基金 (30 0 70 2 2 8)
关键词 3D生物医学图象 图象处理 边缘检出 零交叉算法 平面拟合 图像分割 biomedical image processing edge detection zero crossing algorithm plane fitting
  • 相关文献

参考文献11

  • 1[1]Marr D, Vision W H. Freeman and Company[M]. San Franciso, 1982.
  • 2[2]Canny. Finding Edges and Lines in Images[R]. MIT Technical Report, Rep, 1983, 720.
  • 3[3]Witkin A. Scale Space Filtering. Proc. Int. Joint Conf, Artificial Intelligence, Karlsruhe, Germany, 1983.
  • 4[4]Poggio T, Voornees H, Yuille A L. A Regularized Solution to Edge Detection[R]. Technical Report, Rep. AIM-833, MIT Al Lab, 1985.
  • 5[5]Babaud J,Witkin A, Duda R. Uniqueness of the Gaussian Kernel for Scaling-Space Filtering[J]. IEEE Trans. PAMI, 1986,8.
  • 6[6]Yuille A L, Poggio T A.Scaling Theorems for Zero Crossing[J]. IEEE Trans. PAMI, 1986,8( 1 ).
  • 7[7]Canny. A Computational Approach to Edge Detection[J]. IEEE Trans. PAMI, 1986,8.
  • 8[8]Deriche R. Using Cannys Criteria to Derive a Recursively lmplemented Optimal Edge Detector[J]. Int. J. Computer Vision, 1987, 6.
  • 9[9]Sarkar S, Boyer K L. Optimal Infinite Impulse Response Zero Crossing Based Edge Detection[J ]. CVGIP: Image Undcrstanding, 1991, 54(2).
  • 10[10]Shen J, Castan S. An Optimal Linear Operator for Step Edge Detection[J]. CVGIP: Graphical Models and Image Process ing, 1992, 54(2).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部