期刊文献+

数字信号处理器在脑-机接口系统中的应用 被引量:15

An Application of DSP in Brain-Computer Interface
下载PDF
导出
摘要 本文研究数字信号处理器 (DSP)在基于稳态视觉诱发电位的脑 机接口系统中的应用 ,同时详细介绍了系统的构成及各部分的设计与实现方法 ,并展示了初步的实验结果。本系统主要由刺激器、模拟放大电路、DSP核心电路和控制外设的红外发射电路组成。所选用的都是低功耗、高速的芯片 ,以满足实用性和实时性的要求。软件部分采用汇编语言编程 ,主要包括控制信号采集、 5 0Hz陷波和带通滤波、快速傅立叶变换、特征提取和识别。经过测试 ,该系统不仅可以将输入的正弦波正确地检测出来 ,而且对于接入的实际脑电中的诱发响应也能很好地检测和识别。因此使用DSP使脑 机接口系统的小型化、实用化是可行的。 An application of Digital Signal Processor(DSP) in Brain Computer Interface System based on Steady State Visual Evoked Potential(SSVEP) is presented in this paper. System design and implementation are described in detail, and results of preliminary test are provided. This system mainly consists of four parts:stimulator, analog amplifiers, DSP circuit, and the infrared wave radiation circuit to control peripherals. We selected chips of low power consumption and high speed performance to meet practicability and real time requirement. The software, which was developed by using the assembly language, includes mainly control of data collection, 50Hz notch filtering and the band pass filtering, FFT, and feature extraction and recognition. Results of experiments with this system are acceptable. We could detect not only input sine signals but also evoked response in actual EEG. Therefore, the application of DSP to make BCI compact and of practical applications is feasible.
机构地区 清华大学电机系
出处 《北京生物医学工程》 2002年第4期256-259,共4页 Beijing Biomedical Engineering
基金 国家"十五"科技攻关项目 (2 0 0 1BA70 6B -12 )
关键词 脑-机接口 稳态视觉诱发电位 数字信号处理器 Brain Computer interface Steady State visual evoked potential Digital signal processor
  • 相关文献

参考文献2

二级参考文献24

  • 1[1] Pfurtscheller G, et al. Brain-computer interface-a new communication device for handicapped persons. J Microcomput Appl,1993,16:293~299
  • 2[2] EEG-based communication.http://www.ee.ic.ac.uk/research/neural/bci/review.html
  • 3[3] Vaughan T M, et al. EEG-based communication:prospects and problems. IEEE Trans Rehabil Eng,1996,4(4):425~430
  • 4[4] Sutter E E. The brain response interface:communication through visually-induced electrical brain response. J Microcomput Appl,1992,15:31~45
  • 5[5] Farwell L A and Donchin E. Talking off the top of your head:toward a mental prosthesis utilizing event-related brain potentials. Electroenceph Clin Neurophysiol,1988,70:510~523
  • 6[6] Pfurtscheller G, et al. Prediction of the side of hand movements from single trial multichannel EEG data using neural networks. Electroenceph Clin Neurophysiol,1992,82:313~315
  • 7[7] Peltoranta M and Pfurtscheller G. Neural network based classification of non-averaged event-related EEG responses. Med Biol Eng Comput, 1994,32:189~196
  • 8[8] Pfurtscheller G, et al. Differentiation between finger, toe and tongue movement in man based of 40Hz EEG. Electroenceph.Clin Neurophysiol,1994,90:456~460
  • 9[9] Flotzinger D, et al. Classification of non-averaged EEG data by learning vector quantisation and the influence of signal preprocessing. Med Biol Eng Comput,1994,32:571~576
  • 10[10] Kalcher J, et al. Graz brain-computer interface Ⅱ:towards communication between humans and computers based on online classification of three different EEG patterns. Med Biol Eng Comput,1996,34:382~388

共引文献54

同被引文献191

引证文献15

二级引证文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部