期刊文献+

基于频繁模式树的普遍化关联规则挖掘 被引量:4

Mining Generalized Association Rules Based on Frequent Pattern Tree
下载PDF
导出
摘要 提出了基于频繁模式树的普遍化关联规则挖掘算法 MGAR- FP,充分利用频繁模式树的性质 ,避免大量候选模式的生成和频繁模式匹配 ,提高了挖掘的效率和速度 .实验表明 ,算法是有效的 ,比传统的普遍化关联规则挖掘算法Cum The algorithm MGAR-FP for mining generalized association rules based on frequent pattern tree is proposed. It makes full use of the properties of frequent pattern tree and avoids producing a large number of candidate itemsets, so speeding up the mining. The experiments shows it is efficient and it's execution speed is faster than the traditional mining algorithm Cumulate.
出处 《小型微型计算机系统》 CSCD 北大核心 2002年第12期1469-1471,共3页 Journal of Chinese Computer Systems
基金 国家自然科学基金 (项目号 60 1730 5 8)资助
关键词 频繁模式树 普遍化关联规则 知识发现 数据挖掘 数据库 knowledge discovery data mining association rules generalization
  • 相关文献

参考文献6

  • 1[1]Agrawal R, Imielinski T, and Swami A. Mining association rules between set of items in large databases [C].In Proceedings of the 1993 ACM-SIGMOD Conference on Management of Data, Washington, D.C., 1993. 207~216
  • 2[2]Agrawal R, Strikant R, Fast algorithms for mining association rules[C].In Proceedings of the 20th VLDB Conference, Santiago, Chile, 1994. 247~299
  • 3[3]Han J, Chen M, and Yu Y. An effective hash-based algorithm for mining association rules[C].In Proceedings of the 1995 ACM SIGMOD International Conference on Management of Data,1995. 175~186
  • 4[4]Han J, Fu Y. Discovery of multiple-level association rules from large databases[C].In Proceedings of the 21st VLDB Conference, Zurich, Switzerland, 1995. 402~419
  • 5[5]Strikant R, Agrawal R. Mining generalized association rules[C].In Proceedings of the 21st VLDB Conference, Zurich, Switzerland, 1995. 402~419
  • 6[6]Han J, Pei J, and Yin Y. Mining frequent patterns without candidate generation[C].In Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, 2000. 1~12

同被引文献15

  • 1Han J.etal,Mining frequent patterns without candidate generation[C].In:Proceedings of the 2000 ACMSIGMOD Conference On Management of Data,Dallas,TX,2000,1-12.
  • 2R Srikant,R Agrawal,Mining generalized association rules[C].In:Proc of 21 th Int'l Conf on Very Large Data Bases.Zurich,Switzerland:Morgan Kanfmann,1995.407-419.
  • 3R Srikant,R Agrawal,Mining quantitative association rulesin large relational tables[C].Proc of 1996ACM SIGMOD Int'l Conf on Management of Data.Montreal,Quebec,Canada:ACM Pres,1996,1-12.
  • 4A Savasere,E Omiecinski,S B Navathe.Mining for strong negative associations in a large database of customer transactions[C].In:Proc of the 14th Int'l Conf on Data Engineering.Orlando,Florida,USA:IEEE Computer Society Press,1998.494-502.
  • 5Han J, Kamber M. Data mining: concepts and techniques[M]. Morgan Kaufman, 2001.
  • 6Srikant R, Agrawal R. Mining generalized association rules [C]. Proc. of the 21st VLDB Conf. , 1995,409-419.
  • 7Liu B, Hsu W, Ma Y. Mining association rules with multiple minimum supports[C]. Proc. ACM SIGKDD Conf. on KDD, San Diego, CA, August, 1999,337-341.
  • 8Ming-Cheng Tseng, Wen-Yang Lin. Mining generalized association rules with multiple minimum supports[M]. DaWaK 2001, 11-20.
  • 9Han J, Pei J, Yin Y. Mining frequent patterns without eandidate generation[C]. Proe. 2000 ACM-SIGMOD Int. Conf. on Management of Data, Dallas, TX, 2000.
  • 10Iko Pramudiono, Masaru Kitsuregawa: FP-tax: tree structure based generalized association rule mining[C]. DMKD 2004, 60-63.

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部