摘要
作者曾为许多特征向量导数计算 ,提出过一种介于直接法 (指直接求解线代方程组的 ,以Nelson为代表的一类方法 )和模态法之间的高精度动柔度法。这种方法与作者建立的一般动柔度法一样 ,不能用于密集根之特征向量导数的计算。为使该方法扩展到密集根状态 ,本文将作者发展的混合移频技术应用于原高精度动柔度法 ,并重新推导了混合移频系统的高精度动柔度式 。
To compute many eigenvector derivatives,the author proposed a higher precision dynamic flexibility method.As with another dynamic flexibility method developed by the author,the higher precision dynamic flexibility method is not suitable to the calculation of eigenvector derivative with concentrated eigenvalue.For this,a hybrid shifting frequency technique proposed by the author is applied to the higher precision dynamic flexibility method and a higher precision dynamic flexibility expression of a system with hybrid shifting frequency is derived,so that an improved higher precision dynamic flexibility method is found.This improved method can be employed in the calculation of many eigenvector derivatives with concentrated root.
出处
《强度与环境》
2002年第4期5-10,共6页
Structure & Environment Engineering
关键词
特征向量导数
特征灵敏度
密集特征值
动柔度
结构设计
Eigenvector derivative
Eigen sensitivity
Concentrated eigenvalue
Dynamic flexibility