期刊文献+

几何非线性固体壳单元新列式的研究 被引量:1

Novel Formulation of Solid Shell Element for Geometrically Nonlinear Analysis
下载PDF
导出
摘要 通过定义广义应力 ,提出了一个改进的刚度矩阵 ,以克服固体壳元的厚度自锁问题 ;由一个基于广义应力的新的非线性变分泛函 ,推导了一个用于几何非线性分析的十八节点固体壳单元 ,精心选择低、高阶应力插值模式 ,保证二者正交 ,且对应于低阶项的刚度阵与减缩积分单元相当 ,对应高阶项的刚度阵用于克服单元的零能模式且可推得显式 ,从而显著提高了计算效率 ,此外该单元还拥有优秀的收敛性能 。 By defining generalized stress, a modified stiffness matrix is used to overcome the thickness locking of solid shell element. Based on the generalized stress, a new nonlinear variational principle is advised and a 18 node solid shell element is derived for the geometrically nonlinear analysis. The higher order stress modes pertinent to the stabilization are contravariant in nature and their energy products with the displacement derived covariant strain can be programmed without resorting to numerical integration and Gram Schmidt orthogonalization, moreover, the higher order stress modes are judiciously selected to vanish at the sampling points of the second order quadrature. By assuming a trilinear distribution of the acquired Cauchy stress, the residual force terms turn out to be similar as that of uniformly reduced integration (URI) element. Accuracy of the element is virtually identical to that of the URI element, yet a little additional computational costs for stabilization matrix can guarantee it free from commutable zero energy modes. The element has excellent convergence behaviors, and can obtain good convergence results even using larger load steps.
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2002年第5期423-427,共5页 Journal of Nanjing University of Aeronautics & Astronautics
关键词 固体壳单元 有限元 杂交应力 厚度自锁 壳体 应力 finite element shell nonlinearity hybrid stress thickness locking
  • 相关文献

参考文献10

  • 1[1]Ausserer M F,Lee S W. An eighteen-node solid element for thin shell analysis[J]. Inter J Numer Me-thods Engrg, 1988,26:1345~1364
  • 2[2]Betch P,Stein E. An assumed strain approach avoiding artificial thickness straining for a non-linear 4-node shell element[J]. Commun Numer Methods Engrg, 1995,11:899~909
  • 3[3]Parish H. A continuum-based shell theory for non-linear application[J]. Inter J Numer Methods Engrg,1995,38:1855~1883
  • 4[4]Park H C,Cho C,Lee S W. An efficient assumed strain element model with 6 dof per node for geometrically nonlinear shells[J]. Inter J Numer Methods Engrg, 1995,38:4101~4122
  • 5[5]Betsch P,Gruttmann F,Stein E. A 4-node finite shell element for the implementation of general hyperelastic 3D-elasticity at finite strains[J]. Comput Methods Appl Mech Engrg,1996,130:57~79
  • 6[6]Hauptmann R,Schweizerhof K. A systematic development of solid-shell element formulations for linear and non-linear analysis employing only displacement degrees of freedom[J]. Inter J Numer Methods Engrg,1988,42,49~69
  • 7[7]Sze K Y,Yi S, Tay M H. An explicit hybrid-stabilized eighteen-node solid element for thin shell analysis[J]. Inter J Numer Methods Engrg,1997,40:1839~1856
  • 8[8]Simo J C, Fox D D, Rifai M S. On a stress resultant geometrically exact shell model. Part III: computational aspects of the nonlinear theory[J]. Comput Methods Appl Mech Engrg, 1990,79:21~70
  • 9[9]Hughes T J R,Cohen M, Haroun M. Reduced and selective integration techniques in the finite element ana-lysis of plates[J]. Nucl Eng Design,1978,46:203~222
  • 10[10]Flügge W. Tensor analysis & continuum mechanics[M]. Berlin:Spring-Verlag, 1972

同被引文献9

  • 1郑世杰.八节点压电固体单元的再研究[J].压电与声光,2004,26(4):321-324. 被引量:4
  • 2Zheng Shi-jie,Wang Xin-wei,Chen Wan-ji.The formulation of refined hybrid EAS solid-shell element and its application to model smart structures containing distributed piezoelectric sensors/actuators[J].Smart Materials and Structures,2004,13(4):43-50.
  • 3He X Q,Ng T Y,Sivashanker S,et al.Active control of FGM plates with integrated piezoelectric sensors and actuators[J].International Journal of Solids and Structures,2001,38:1641-1655.
  • 4He X Q,Liew K M,Ng T Y,et al.FEM model for the active control of curved FGM shells using piezoelectric sensor/actuator layers[J].Interna -tional Journal for Numerical Methods in Engineering,2002,54:853-870.
  • 5Liew K M,He X Q,Ng T Y,et al.Active control of FGM plates subjected to a temperature gradient:Modelling via finite element method based on FSDT[J].International Journal for Numerical Methods in Engineering,2001,52:1253-1271.
  • 6Sze K Y,Yao L Q.A hybrid-stress ANS solid-shell element and its generalization to smart structure modeling-part Ⅰ:solid-shell element formulation,part Ⅱ:smart structure modeling[J].International Journal for Numerical Methods in Engineering.2000,48:545-582.
  • 7Yamanouchi M,Hirai T,Shiota I.Prvceedings of the first intenational symposium on functionally gradient materials[R].Proc.1st Int.Symp,Japan:1990,vol 1:46-51.
  • 8Ha S K,Keilers C,Chang F K.Finite element analysis of composite structures containing distributed piezo -ceramic sensors and actuators[J].AIAA Journal,1992,30:772-780.
  • 9Tzou H S,Tseng C I,Bahrami H.A thin piezoelectric hexaxedron finite element applied to design of smart continua[J].Finite Elements in Analysis & Design,1994,16:27-42.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部