摘要
利用Brouwer不动点定理证明了Perron-Wielandt定理,即正矩阵必有正特征值及方阵的行(列)元素之和为非零常数b时有特征值b.
Using Brouwer's fixed point theorem,proved that any positive matrix has a positive eigenvalue and any n×n matrix A with the sum of each row entries is constant b has b as a eigenvalue.
出处
《湖北大学学报(自然科学版)》
CAS
2002年第4期287-289,共3页
Journal of Hubei University:Natural Science