期刊文献+

有理Bernstein基和多元有理Blossoms的注记 被引量:1

Notes on the rational Bernstein bases and the multirational Blossoms
下载PDF
导出
摘要 利用指数为分数的二项式定理,将Bernstein基推广到分数次,发展了分数次Bernstein基,得到了与整数次Bern-stein基许多类似的性质及恒等式,而这些性质及恒等式对于整数次Bernstein基仍成立,并且给出了关于分数次Bernstein基的Marsden恒等式及Blossoming形式。文中实例表明,负分数次Bernstein基比负整数次Bernstein基具有更大的灵活性。 Fractional Bernstein bases are introduced by observing that the binomial theorem is valid for fractional exponents. Bernstein bases are extended to fractional degree. Many similar properties and identities, which are valid for integral Bernstein bases, are got. Moreover,Marsden identity and its Blossoming form for fractional Bernstein bases are given and the example shows that fractional Bernstein bases are more flexible than integral Bernstein bases.
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 2002年第6期1235-1239,共5页 Journal of Hefei University of Technology:Natural Science
  • 相关文献

参考文献6

  • 1[1]Ramshaw L. Blossoming :A connect-the-dots approach to splines[R]. Houston: Department of Computer Science,Rice University,1987.
  • 2[2]Ramshaw L. Blossoms are polar forms[J].Computer Aided Geometric Design ,1987,(4):323-358.
  • 3[3]Goldman R. Dual polynomial bases[J]. Journal of Approximation Theory ,1994,79(4):311-346.
  • 4[4]Stefanus Y, Goldman R. Blossoming Marsden's identity[J].Computer Aided Geometric Design, 1992,(9):73-84.
  • 5[5]Goldman R. The rational Bernstein bases and the multirational blossoms[J]. Computer Aided Geometric Design,1999,16(6):701-738.
  • 6[6]Goldman R.Blossoming with cancellation[J].Computer Aided Geometric Design,1999,16(6):617-689.

同被引文献5

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部