期刊文献+

Q345试件细观损伤的声发射量化评价实验研究 被引量:6

EXPERIMENTAL STUDY ON ACOUSTIC EMISSION QUANTITATIVE ASSESSMENT OF Q345 SPECIMEN'S MESOMECHANICAL DAMAGE
原文传递
导出
摘要 根据金属塑性材料细观损伤理论及微孔洞损伤机理,建立以孔洞扩张比VG为损伤变量的声发射量化评价模型。以Q345钢圆棒缺口试件拉伸断裂过程为例,获取材料从屈服到断裂过程声发射信息;采用Gurson-Tvergaard-Needleman(GTN)模型,模拟得到Q345试件拉伸过程细观损伤参量数值解。结合声发射测试和数值模拟结果,建立Q345试件拉伸过程孔洞扩张比的声发射累积撞击计数N量化评价公式。结果表明:Q345钢从屈服到断裂过程N与VG函数关系分为线性损伤及非线性损伤两个阶段,并确定当N达到128个时,材料处于损伤临界转变点。 Based on the mesomechanical damage theory and micro-void damage mechanism, a void growth ratio VG was selected as the damage variable so as to establish an acoustic emission(AE) quantitative evaluation model. Carrying out tensile experiment on Q345 notched bar specimen obtained the AE information from a yield to fracture process. The meso-damage parameters distribution of a tensile specimen was simulated with the Gurson-Tvergaard- Needleman model, and their numerical solutions were achieved. Based on AE testing and Finite Element Simulation, the quantitative evaluation formula for Q345 between the void growth ratio VG and AE cumulative hits N was advanced. The result shows that, in the tensile process of Q345 steel from yield to fracture damage, the function relationship of N and VG can be divided into two stages, namely a linear damage stage and a nonlinear damage stage, and that when the N reaches 128, the material is at the transition state from a linear damage stage to a nonlinear damage stage.
出处 《工程力学》 EI CSCD 北大核心 2014年第4期40-45,60,共7页 Engineering Mechanics
基金 黑龙江省自然科学基金项目(E201239)
关键词 声发射 孔洞扩张比 累积撞击计数 GTN模型 Q345 acoustic emission void growth ratio cumulative hits Gurson-Tvergaard-Needleman model Q345
  • 相关文献

参考文献10

  • 1龙宪海,阳能军,王汉功.基于声发射技术的30CrMnSi钢断裂机理研究[J].材料工程,2011,39(1):17-22. 被引量:7
  • 2朱宏平,徐文胜,陈晓强,夏勇.利用声发射信号与速率过程理论对混凝土损伤进行定量评估[J].工程力学,2008,25(1):186-191. 被引量:67
  • 3王慧晶,林哲,赵德有.声发射技术在工程结构疲劳损伤监测中的应用和展望[J].振动与冲击,2007,26(6):157-161. 被引量:11
  • 4唐春安,徐小荷.缺陷的演化繁衍与Kaiser效应函数[J].地震研究,1990,13(2):203-213. 被引量:72
  • 5M. Abbasi,B. Bagheri,M. Ketabchi,D.F. Haghshenas.Application of response surface methodology to drive GTN model parameters and determine the FLD of tailor welded blank[J].Computational Materials Science.2011(1)
  • 6C. Ennaceur,A. Laksimi,C. Hervé,M. Cherfaoui.Monitoring crack growth in pressure vessel steels by the acoustic emission technique and the method of potential difference[J]. International Journal of Pressure Vessels and Piping . 2006 (3)
  • 7D.E. Lee,I. Hwang,C.M.O. Valente,J.F.G. Oliveira,D.A. Dornfeld.Precision manufacturing process monitoring with acoustic emission[J].International Journal of Machine Tools and Manufacture.2005(2)
  • 8Jinkook Kim,Xiaosheng Gao,Tirumalai S. Srivatsan.Modeling of void growth in ductile solids: effects of stress triaxiality and initial porosity[J].Engineering Fracture Mechanics.2003(3)
  • 9D. Chae,D.A. Koss.Damage accumulation and failure of HSLA-100 steel[J].Materials Science & Engineering A.2003(2)
  • 10A. Needleman,V. Tvergaard.Numerical modeling of the ductile-brittle transition[J].International Journal of Fracture (-).2000(1-2)

二级参考文献74

  • 1李光海,刘正义.基于声发射技术的金属高频疲劳监测[J].中国机械工程,2004,15(13):1205-1209. 被引量:33
  • 2高红旗.小直径芯样检验混凝土抗压强度的试验研究[J].建筑科学,1994,10(4):36-39. 被引量:11
  • 3冯西桥,何树延.表面裂纹疲劳扩展的一种损伤力学方法[J].清华大学学报(自然科学版),1997,37(5):78-82. 被引量:16
  • 4FANG C K,CHUANG T H.Principles of acoustic emission and its application[J].NDT Science and Technology,1999,16(1):4-9.
  • 5ONO K,OHTSU M.Wavelet transform of acoustic emission signals[J].Journal of Acoustic Emission,1995,4 (1):316-320.
  • 6DUNEGAN H L,HARRIS D O.Fracture analysis by use of AE[J].Engineering Fracture Mechanics,1968,1(1):105-108.
  • 7哈宽富.断裂物理[M].北京:科学出版社,2000.
  • 8LIU H K,DAI W L,LEE Y C.Moisture effects and acoustic emission characterization on lap shear strength in ultrasonic welded nylon composites[J].Journal of Materials Science,2000,35(13):3389-3396.
  • 9Ellyin F,Fakinlede C O A.Crack Tip Growth Rate Model for Cyclic Loading[C],Proc.10th Canadian Fracture Conf.,Waterloo,Ontario,Canada,August 24-26,1983,229-237.
  • 10Kujawski D,Ellyin F.A Cumulative Damage Theory for Fatigue Crack Initiation and Propagation[J],Int J Fatigue,1984,6(2):83-88.

共引文献150

同被引文献63

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部