期刊文献+

椭圆形港湾内水波共振的解析解 被引量:4

AN ANALYTICAL SOLUTION FOR OSCILLATIONS WITHIN AN ELLIPTICAL HARBOR
原文传递
导出
摘要 通过坐标变换将线性长波方程转换为基于椭圆坐标系的水波运动方程,并采用分离变量法分别得到马丢方程描述的极角方向运动方程和拓展型马丢方程描述的径向运动方程。椭圆形港湾内的水波共振可以表示为马丢函数与拓展型马丢函数的乘积。由边界处自由水面法向量梯度为零求得水波共振的特征参数。椭圆形港湾内水波共振的极角方向波节点数与马丢函数的阶数相同,径向波节点数与边界条件相关。 A linear function is obtained by transforming the shallow-water wave equation from rectangular coordinates to elliptic coordinates, which gives the ordinary and the modified Mathieu equations respectively to describe oscillations in the polar and the radial directions by applying the method of separation of variables. Oscillations within an elliptical harbor can be described by appropriate products of radial and angular Mathieu functions. Eigenvalues are obtained by implementing the no-flux condition at the boundary. The oscillation is a two dimension distribution, and there are n nodes running in the polar direction, which is the same as the order of the angular Mathieu function; the nodes in radial direction are related with the boundary condition.
出处 《工程力学》 EI CSCD 北大核心 2014年第4期252-256,共5页 Engineering Mechanics
基金 国家自然科学基金项目(51209081) 中国博士后科学基金项目(2012M511191) 江苏省博士后科研计划项目(1102071C) 中央高校基本科研业务费专项资金项目(2012B01214)
关键词 港湾共振 椭圆形港湾 马丢函数 水波共振 海岸动力学 harbor resonance elliptical harbors Mathieu functions resonance coastal dynamics
  • 相关文献

参考文献4

  • 1王岗,马小舟,马玉祥,董国海.短波对港池长周期振荡的影响[J].工程力学,2010,27(4):240-245. 被引量:11
  • 2张善杰,沈耀春.马丢函数的数值计算[J].电子学报,1995,23(9):41-46. 被引量:8
  • 3Gang Wang,Guohai Dong,Marc Perlin,Xiaozhou Ma,Yuxiang Ma.An analytic investigation of oscillations within a harbor of constant slope[J].Ocean Engineering.2010(2)
  • 4C. C. Mei,ü. ünlüata.Resonant scattering by a harbor with two coupled basins[J].Journal of Engineering Mathematics.1976(4)

二级参考文献14

  • 1张善杰,沈耀春.任意偏心率椭圆波导的本征模序列[J].电子学报,1994,22(3):86-89. 被引量:3
  • 2马小舟.近岸低频波浪的Boussinesq模拟[C].大连:大连理工大学,2006.
  • 3Bowers E C. Harbour resonance due to set-down beneath wave groups [J]. Journal of Fluid Mechanical, 1976, 79(1): 71 -92.
  • 4Mei C C, Agnon Y. Long-period oscillations in a harbour induced by incident short waves [J]. Journal of Fluid Mechanical, 1989, 208: 595-608.
  • 5De Girolamo P. An experimental on harbour resonance induced by incident regular waves and irregular short waves [J]. Coastal Engineering, 1996, 27(1-2): 47-66.
  • 6Wei G, Kirby J T. Time-dependent numerical code for extended Boussinesq equations [J]. Journal of Waterway, Port, Coastal and Ocean Engineering, 1995, 121(5): 251- 261.
  • 7Wei G. Fully nonlinear Boussinesq model for surface waves. Part 1. Highly nonlinear unsteady waves [J]. Journal of Fluid Mechanical, 1995, 294:71 - 92.
  • 8Schaffer H A, Sorensen O R. On the internal wave generation in Boussinesq and mild-slope equations [J]. Coastal Engineering, 2006, 53(4): 319-323.
  • 9Losada I J. Numerical modeling of nonlinear resonance of semi-enclosed water bodies: Description and experimental validation [J]. Coastal Engineering, 2008, 55(1): 21 -34.
  • 10Massell S R. Wavelet analysis for processing of ocean surface wave records [J]. Ocean Engineering, 2001, 28(8): 957-987.

共引文献17

同被引文献27

引证文献4

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部