期刊文献+

激波与障碍物作用加速衰减的数值研究 被引量:2

INVESTIGATIONS INTO THE ACCELERATING ATTENUATION OF SHOCK WAVES BY OBSTACLES
原文传递
导出
摘要 强激波在管道内传播时与障碍物作用会发生绕射和反射,同时还会生成膨胀波等复杂波系结构。初步研究表明,若障碍物形状合适,则可导致激波强度衰减,但其衰减程度与障碍物形状的关系则仍待进一步研究。该文利用高阶数值格式结合沉浸边界法(IBM)以及自适应网格加密(AMR)技术,对激波在管道内与不同迎风面角度的障碍物作用过程进行了数值模拟,对激波与障碍物作用衰减的机理进行了分析,并对三种障碍物对激波衰减的效果进行了对比分析,结果表明,迎风面斜率为负的障碍物相对于其他两种障碍物具有最佳激波衰减效果。另外,与目前隧道中常用的壁面为矩形障碍物的模型为算例进行了对比,结果表明,该三角形模型比矩形障碍物具有更显著的激波衰减效果。 When a strong shock wave interacts with obstacles in a tube, some complex physical phenomena, such as shock wave reflection and diffraction etc., may occur, which generates expansive waves and many other complex wave structures. Previous research has shown that, if the shape of the obstacle is appropriate, the intensity of the shock wave may be attenuated. However, the relationship between the attenuation magnitude of shock waves and obstacles requires further clarification. In this study, numerical investigation of the interaction of shock waves with three triangular obstacles of different slopes of windward sides were carried out using high order numerical schemes, i.e. the immersed boundary method(IBM) and the adaptive mesh refinement(AMR) technology. Results show that, obstacles with a negative windward side slope have the most favourable effects on shock wave attenuation when compared to those with positive and zero slopes. In addition, triangular obstacles have shown to impose a more significant attenuation effect on shock waves than the commonly-used rectangular obstacles in tunnels.
出处 《工程力学》 EI CSCD 北大核心 2014年第9期239-244,共6页 Engineering Mechanics
基金 国家自然科学基金项目(11272156)
关键词 流体力学 激波衰减 数值模拟 WENO格式 沉浸边界法 fluid dynamics shock wave attenuation numerical investigation WENO scheme immersed boundary method
  • 相关文献

参考文献11

二级参考文献66

  • 1黄希桥,严传俊,范玮,王治武,郑龙席,李牧.脉冲爆震发动机引射器的实验研究[J].机械科学与技术,2005,24(8):999-1001. 被引量:3
  • 2范育新,王家骅,李建中,张义宁.脉冲爆震发动机(PDE)引射增推装置试验[J].航空动力学报,2005,20(6):983-988. 被引量:3
  • 3宫翔飞,张树道,江松.界面捕捉Level Set方法的(AMR)数值模拟[J].计算物理,2006,23(4):391-395. 被引量:12
  • 4Kondo K, Murakami S, Mochida A. Generation of velocity fluctuations for inflow boundary condition of LES [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1997, 67-68:51-64.
  • 5Fluent Inc, Fluent user's guide, version 6.3 [M]. USA: Fluent Inc. Lebanon, 2007.
  • 6Harlow F H, Welch J E. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface [J]. Physics Fluids, 1965, 8: 2182-2189.
  • 7Schlichting H. Boundary-layer theory [M]. 7th ed. New York: McGraw-Hill Book Company, 1979.
  • 8Lund T S, Wu X, Squires K D. Generation of turbulent inflow data for spatially-developing boundary layer simulations [J]. Journal of Computational Physics, 1998, 140:233-258.
  • 9Murlis J, Tsai H M, Bradshaw P. The structure of turbulent boundary layers at low reynolds number [J]. Journal of Fluid Mechanics, 1982, 122: 13-56.
  • 10Murakami S. Current status and future trends in compu-tational wind engineering [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1997, 67-68: 3-34.

共引文献30

同被引文献8

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部