期刊文献+

基于切比雪夫多项式模型的多自由度结构非线性恢复力时域识别 被引量:10

TIME DOMAIN NONLINEAR-RESTORING FORCE IDENTIFICATION FOR MDOF STRUCTURES WITH CHEBYSHEV POLYNOMIAL MODEL
原文传递
导出
摘要 结构非线性恢复力可直接描述其在动力荷载作用下损伤发生发展过程,传统的基于特征值抽取的结构识别方法严格来讲不适应于振动过程中出现损伤的情况。该文利用结构动力响应时程的切比雪夫多项式表示非线性恢复力,在结构质量等物理参数和恢复力模型未知时,提出利用最小二乘优化算法的多自由度结构在完整及非完整激励下非线性恢复力识别方法。对一个含磁流变阻尼器的多自由度数值模型和一个带磁流变阻尼器的四层框架结构的非线性恢复力进行了识别,在数值模拟中探讨了测量噪声对识别结果的影响,并与基于幂多项式模型的方法的结果进行了对比。结果表明,所提出的非线性恢复力识别方法能对结构的非线性恢复力进行有效识别,识别精度高,可用于工程结构在强动力荷载作用下的损伤发生发展过程的监测与识别,并对结构耗能进行定量评估。 A nonlinear restoring force describes directly the initiation and development procedure of structural damage under dynamic loadings and, strictly speaking, the conventional structural identification approaches based on eigenvalue or eigenvector extraction are not applicable for nonlinear dynamic systems due to the nonlinearity accompanying with the damage initiation and development. In this study, a Chebyshev polynomial model based on structural dynamic response time series is proposed to model the nonlinear restoring forces under complete and incomplete excitation scenarios. Without the use of any assumption on the nonlinear restoring model and mass distribution, the nonlinear restoring force is identified by the least square method under different excitation conditions. The feasibility and robustness of the proposed approaches were illustrated via numerical simulation with a multi-degree-of-freedom(MDOF) structure equipped with a magneto-rheological(MR) damper considering the effect of noise and dynamic test measurements with a 4-story steel frame equipped with two MR dampers to mimic structural nonlinear performance. Identification results are compared with that of the previously proposed power polynominal based approach. The results show that the proposed approach identifies the nonlinear restoring force with higher accuracy and provides a way for the damage initiation and development procedure monitoring and for the quantitative energy consumption evaluation of engineering structures under strong dynamic loadings.
出处 《工程力学》 EI CSCD 北大核心 2014年第11期99-109,共11页 Engineering Mechanics
基金 国家自然科学基金项目(50978029)
关键词 损伤识别 非线性恢复力 切比雪夫多项式模型 完整激励 非完整激励 磁流变阻尼器 damage identification nonlinear restoring force Chebyshev polynomial model complete excitations incomplete excitations MR dampers
  • 相关文献

参考文献8

  • 1许斌,贺佳,Sami F.Masri.动力系统非线性行为识别方法与验证[J].土木工程学报,2011,44(S1):24-30. 被引量:5
  • 2周强,瞿伟廉.磁流变阻尼器的两种力学模型和试验验证[J].地震工程与工程振动,2002,22(4):144-150. 被引量:91
  • 3樊建修.计算机常用函数逼近方法及切比雪夫多项式[J].工业仪表与自动化装置.1986(03)
  • 4Jia He,Bin Xu,Sami F. Masri.Restoring force and dynamic loadings identification for a nonlinear chain-like structure with partially unknown excitations[J].Nonlinear Dynamics.2012(1)
  • 5Bin Xu,Jia He,Roger Rovekamp,Shirley J. Dyke.Structural parameters and dynamic loading identification from incomplete measurements: Approach and validation[J].Mechanical Systems and Signal Processing.2011
  • 6Bin Xu,Jia He,Sami F. Masri.Data-based Identification of nonlinear restoring force under spatially incomplete excitations with power series polynomial model[J].Nonlinear Dynamics.2012(3)
  • 7S. F. Masri,J. P. Caffrey,T. K. Caughey,A. W. Smyth,A. G. Chassiakos.A General Data-Based Approach for Developing Reduced-Order Models of Nonlinear MDOF Systems[J].Nonlinear Dynamics (-).2005(1-2)
  • 8B. F. Spencer Jr.,S. J. Dyke,M. K. Sain,J. D. Carlson.Phenomenological Model for Magnetorheological Dampers[J].Journal of Engineering Mechanics.1997(3)

二级参考文献22

  • 1[1]Soong T T,Spencer Jr.B F.Active,semi -active and hybrid control of structures[ A].12th World Conference on Earthquake Engineering [C],Aucklang,New Zealand,2002.paper 2834.
  • 2[2]Xu Y L and Qu W L.Seismic response control of frame structures using magnetorheological/electrorheological dampers [ J ],Earthquake Engineering and Structural Dynamics,2000,29:557 -575.
  • 3[3]Yang G,Spencer Jr.B F,Calson J D and Sain M K.Large -scale MRfluid dampers: dynamic performance consideration [ A ].Proceedings of International Conference on Advances in Structure Dynamic[ C].Vol; 1,Hong Kong,China,2000,341 -348.
  • 4[4]Stanway R,Sproston J L and Stevens N G.Non -linear modeling of an electro- rheological vibration damper [ J ].J.Eletrostatics,1987,20:167 - 184.
  • 5[5]Gamota D R and Filisko F E.Dynamic mechanical studies of electrorheological materials: moderate frequencies [ J ],J.Rheology,1991,35:199- 425.
  • 6[6]Spencer Jr.B F,Dyke S J,Sain M K and Carlson J D.Phenomenological model for magnetorheologieal damper [ J],J.Engrg.Mech.,ASCE,1997,123: 230 -238.
  • 7[7]Chang C C and Roschke P.Neural network modeling of a magnetorheological damper [ J ],J.Intelligent Material System and Structure,1998,9:755 - 764.
  • 8[8]Choi S B,Lee S K and Park Y P.A hysteresis model for the field - dependent damping force of a magnetorheological damper [ J],J.Sound Vib.,2001,245: 375 - 383.
  • 9[9]Dahl P R.Solid friction damping of mechanical vibrations [J],AIAA J.,1976,14:1675 - 1682.
  • 10S. F. Masri,J. P. Caffrey,T. K. Caughey,A. W. Smyth,A. G. Chassiakos.A General Data-Based Approach for Developing Reduced-Order Models of Nonlinear MDOF Systems[J]. Nonlinear Dynamics . 2005 (1-2)

共引文献95

同被引文献61

引证文献10

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部