期刊文献+

燃气涡轮静叶考虑叶型及冷却结构的气热耦合优化 被引量:4

Conjugate Heat Transfer Optimization for Blade Profiles and Cooling Structure in Turbine Vane
原文传递
导出
摘要 为通过气热耦合优化计算改善叶片表面温度场,提高叶片气动效率,编制了气热耦合气动和冷却结构参数化方法程序及网格自动生成程序,采用该程序对燃气涡轮静叶进行了考虑叶型及冷却结构的气热耦合优化。优化结果表明:对叶型及冷却结构优化后,形成解集中气动效率分别提升0.3%和0.17%,主流流量仅变化0.116%和0.058%,高温函数降低38.55%、51.6%,叶片表面最大温度降低5.6 K、6.9 K,平均温度降低5 K、7 K。通过分析,前缘第一腔高温区雷诺数的增大以及第三腔低速回流区的减小是改善叶片温度场的主要因素;根中截面的型面压差的减小导致横向二次流损失的降低是减小气动损失的主要原因。 To ameliorate the temperature distribution and improve its aerodynamic performance of vane by conjugate heat transfer optimization,the in house-code of parametric method and grid generation for aero-thermal conjugating has programed.The study of using this in house-code to optimize the turbine vane considering blade profile and cooling structure has done.The results shows that by conjugate heat transfer optimized on cooling structure and profile,the aerodynamic has increased 0.3%and 0.17%,the flow rate of main flow has changed only 0.116%and 0.058%,the high temperature function has decreased 38.55%and 51.6%,while the maximum temperature of blade surface has reduced 5.6 K and 6.9 K,average temperature has lessened 5 K and 7 K.The increase of Re in high temperature of first chamber and low speed vortex region in the third cavity are the main factors of temperature distribution improvement,while the decrease of low transverse secondary flow loss led by reduce of pressure difference between pressure surface and suction surface is the main factor of the reduce of the aerodynamic loss.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2014年第6期1079-1082,共4页 Journal of Engineering Thermophysics
基金 国家自然科学基金委创新研究群体(No.51121004)
关键词 气热耦合 静叶 叶型 冷却结构 优化 conjugate heat transfer vane blade profile cooling structure optimization
  • 相关文献

参考文献7

二级参考文献51

  • 1黄洪雁,陈凯,董平,冯国泰,王仲奇.气热耦合多孔气膜冷却流动的数值研究[J].工程热物理学报,2007,28(z1):81-84. 被引量:7
  • 2王强,郭兆元,周驰,颜培刚,冯国泰,王仲奇.考虑转捩的跨声速气冷涡轮叶片气热耦合计算[J].航空动力学报,2009,24(12):2703-2710. 被引量:3
  • 3刘振侠,张丽芬.采用热-流耦合方法对气冷涡轮叶片换热的计算[J].西北工业大学学报,2007,25(2):315-319. 被引量:9
  • 4Han J C,Dutta S,Ekkad S.Gas turbine heat transfer and cooling technology[M].London:Taylor & Francis,2000.
  • 5Hyhon L D,Milhec M S,Turner E R,et al.Analytical and experimental evaluation of the heat transfer distribution over the surfaee of turbine vanes[R].NASA-CR168015,1983.
  • 6Dieter Bohn,Bonhoff B.Combined aerodynamic and thermal analysis of a turbine nozzle guide vane[R].IGTC 95-108.
  • 7Dieter Bohn.Numerical 3-D conjugate flow and heat transfer investigation of a transonic convection-cooled thermal barrier coated turbine guide vane with reduced cooling fluid mass flow[R].ASME 2003-GT-38431.
  • 8William James.Three-dimensional conjugate heat transfer simulation of an internally-cooled gas turbine vane[R].ASME 2003-GT-38551.
  • 9Karsten Kusterer,Dieter Bohn,Takao Sugimoto,et al.Conjugate calculations for a film-cooled blade under different operating conditions[R].ASME 2004-GT-53719.
  • 10Karsten Kusterer,Dieter Bohn,Takao Sugimoto,et al.Improvement of a film-cooled blade by application of the conjugate calculation technique[R].ASME 2005-GT68555.

共引文献86

同被引文献15

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部