期刊文献+

叶型几何设计弱化叶片外表面换热的作用

Effects of Airfoil Geometric Design to Reduce Blade External Heat Transfer
原文传递
导出
摘要 本文采用γ-Re_θ湍流转捩模型,数值模拟了两组不同叶型的涡轮叶栅表面的表面换热系数。结果证明:1)数值计算正确地预测了转捩发生位置,保证了表面换热系数模拟的可靠性;2)由于叶片型线的差异,叶片表面流动的转捩位置也不同。控制叶片表面边界层流动状态,推迟流动转捩,能够降低叶片热负荷。在相同进、出口气流条件下,选择不同的叶栅造型参数,可以调整所产生的涡轮叶型,从而增强或弱化叶片表面的换热。 Numerical simulation was used to predict surface heat transfer coefficients on two types of turbine cascade with SST and γ-R_(eθ) turbulent transition models.Results show that:1) the flow's transition is located correctly in numerical prediction,which ensures the credibility of predicting the surface heat transfer coefficients;2) Because of the different airfoil profiles,flow transition occurs at different locations.When the flow's boundary layer is controlled to delay its transition,the blade external heat flux can be reduced.At the same mflow conditions,various cascade parameters are chosen to generate different turbine blade samples,among which enhanced or weakened surface heat transfer are observed.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2014年第8期1508-1512,共5页 Journal of Engineering Thermophysics
基金 国家自然科学基金(No.51276116)
关键词 涡轮叶栅 边界层转捩 表面换热 叶型设计 数值模拟 turbine cascade boundary layer transition surface heat transfer profile design
  • 相关文献

参考文献2

二级参考文献20

  • 1Mansour M L, Hosseini K M, Liu J S. Assessment of the impact of laminar-turbulent transition on the accuracy of heat transfer coefficient prediction in high pressure turbines[R]. ASME GT2006-90273.
  • 2Bohn D, Bonhoff B, Schonenborn H. Combinedaerodynamic and thermal analysis of a high pressure turbine nozzle guide vane[R]. 5-YOKOHAMA-IGTC-108.
  • 3Hylton L D, Mihelc M S, Turner E R, et al. Analytical and experimental evaluation of the heat distribution over the surfaces of turbine vanes[R]. NASA CR168015, 1983.
  • 4York W D, Leylek J H. Three-dimensional conjugate heat transfer simulation of an internally-cooled gas turbine vane [R]. ASME GT2003-38551.
  • 5SHENG Chunhua, XUE Qingluan. Aerothermal analysis of turbine blades using an unstructured flow solverU^2NCLE [R]. AIAA 2005-4683.
  • 6Menter F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8) : 269-289.
  • 7Menter F R, Kuntz M, Langtry R. Ten years of industrial experience with SST turbulence model [M]//Hanjalic K, Nagano Y, Tummers M. Turbulence Heat and Mass Transfer 4 . [S. l. ] : Begell House Inc. , 2003.
  • 8Menter F R, Langtry R B, Likki S R, et al. A correlation based transition model using local variables: Part 1- Model formulation[R]. ASME-GT2004-53452.
  • 9Han J C, Dutta S, Ekkad S. Gas turbine heat transfer and cooling technology [M]. London: Taylor & Francis, 2000.
  • 10Dunn M G. Convective heat transfer and aerodynamics in axial flow turbines[J]. ASME Journal of Turbo-machinery, 2001, 123: 637-686.

共引文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部