期刊文献+

激波对超音速平板发汗冷却的影响 被引量:2

Investigation of Shock Wave Influence on Supersonic Transpiration Cooling
原文传递
导出
摘要 本文分析了激波影响下,不同激波强度,冷却气体和注入率对发汗冷却效果的影响。马赫数3的超音速主流遇到流道内的楔形激波发生器产生斜激波入射到多孔平板表面。楔块楔角φ分别为0°、4°、8°、12°模拟不同的入射激波强度,冷却介质分别为空气、甲烷与氢气。计算结果表明,激波使多孔区域出口表面静压上升,冷却流体流出受阻而破坏冷却效果,且冷却效率随激波强度增强而下降,随冷却气体分子量增大,冷却效率下降幅度减小;但在激波强度较强时,激波在多孔表面形成逆压梯度,迫使冷却流体流向入射点上游区域而使该区域冷却效果得到恢复。提高冷却剂注入率可以减弱激波对冷却效率的破坏作用,但使壁面温度不均匀性增加。 This paper analyzed the impact of the shock wave intensity,cooling gas and the coolant blowing ratio on transpiration cooling.An oblique shock wave was induced by the shock wave generator in the flow channel and incident on the surface of the porous plate.Wedge angle of the shock generator Φ was chosen as 0°,4°,8° and 12° to simulate different incident shock intensities.And air,methane and hydrogen acted as coolant.The results show that the static pressure at the shock wave interaction region rises and the cooling effect decreases with the increasing of shock wave intensity.As the coolant gas molecular weight increases,the extent of cooling efficiency reduction decreases.When the shock wave is strong enough,the adverse pressure gradient at the porous surface forces the coohng fluid flows into the upstream region of the porous plate.Increasing the cooling rate can reduce destructive effect of shock wave,while the wall surface temperature unevenness increases.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2014年第11期2288-2293,共6页 Journal of Engineering Thermophysics
基金 国家自然科学基金项目(No.51276094) 国防基础科研计划资助(No.B1420110113)
关键词 超音速 发汗冷却 激波 supersonic transpiration cooling shock wave
  • 相关文献

参考文献2

  • 1黄寓理,姜培学,胥蕊娜.微细多孔介质中对流换热研究[J].工程热物理学报,2011,32(2):273-276. 被引量:4
  • 2Pei-Xue Jiang.NUMERICAL SIMULATION OF FORCED CONVECTION HEAT TRANSFER IN POROUS PLATE CHANNELS USING THERMAL EQUILIBRIUM AND NONTHERMAL EQUILIBRIUM MODELS[J].Numerical Heat Transfer Part A: Applications.1999(1)

二级参考文献9

  • 1胥蕊娜,姜培学,李勐,郭楠.微细多孔介质中流动及换热实验研究[J].工程热物理学报,2006,27(1):103-105. 被引量:8
  • 2Polyaev V M, Mozhaev A P, Galitseysky B M, et al. A Study of Internal Heat Transfer in Nonuniform Porous Structures [J]. Experimental Thermal and Fluid Science, 1996, 12(4): 426 -432.
  • 3K Ichimiya. A New Method for Ecaluation of Heat Transfer Between Solid Material and Fluid in a Porous Medium [J]. Journal of Heat Transfer, 1999, 121(4): 978- 983.
  • 4Younis L B, Viskanta R. Experimental Determination of The Volumetric Heat Transfer Coefficient Between Stream of Air and Ceramic Foam [J]. Int. J. Heat Mass Transfer- 1993, 36(6): 1425-1434.
  • 5J J Hwang, G J Hwang, R H Yeh, et al. Measurement of Interstitial Convective Heat Transfer and Frictional Drag for Flow Across Metal Foams [J]. Journal of Heat Transfer, 2002, 124(1): 120- 129.
  • 6Jiang P X, Ren Z P. Numerical Investigation of Forced Convection heat Transfer in Porous Media using a Thermal Non-Equilibrium Model [J]. Int. J. Heat Fluid Flow, 2001, 22:102-110.
  • 7D Kunii, J M Smith. Heat Transfer Characteristics of Porous Rocks: 2 Thermal Conductivities of Unconsolidated Particles with Flowing Fluids [J]. A.I.Ch.E Journal, 1961, 7(1): 29-34.
  • 8K Nagata, H Ohara, Y Nakagome, et al. The Heat Transfer Performance of A Gas-Solid Contactor with Regu- larly Arranged Baffle Plates [J]. Powder Technology, 1998, 99(3): 302-307.
  • 9姜培学,任泽霈,陈旭扬,张左匆.液体火箭发动机推力室发汗冷却传热过程的数值模拟(Ⅱ)数值方法与计算结果[J].推进技术,1999,20(4):17-21. 被引量:15

共引文献3

同被引文献8

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部