期刊文献+

阳极传质对三合一微生物燃料电池性能的影响 被引量:2

Effect of Anodic Mass Transfer on Performance of Membrane Electrode Assembly Typed Microbial Fuel Cells
原文传递
导出
摘要 物质传输是影响MFC性能的一个重要因素。本文构建三合一膜电极式微生物燃料电池(MFC),研究了阳极传质形式对MFC启动特性、阳极生物膜电化学活性和性能的影响。结果表明,与阳极采用大腔室结构的MFC-1相比,阳极采用蛇形流道的MFC-2由于在启动过程中阳极电解液传质较佳,不但启动较快而且输出电压更高。启动完成后,MFC-2阳极生物膜电化学活性较高,采取不同扫描速度的循环伏安扫描测试证明了这主要是由于蛇形流道较佳的传质所致。启动过程和产电过程中较佳的传质导致MFC-2最大功率密度(2676.2 mW·m^(-2))比MFC-1最大功率密度(2149.0 mW·m^(-2))约高24.5%。 Mass transfer is one of important factors affecting the performance of Microbial Fuel Cell(MFC).Two membrane electrode assembly typed MFC with different mass transfer type in anode(MFC-1:bulk chamber in anode;MFC-2:serpentine flow field in anode) were constructed to investigate its effects on MFC performance.The results demonstrated that MFC-2 had a faster startup process and a higher voltage output due to the better mass transfer of anolyte during the startup period compared with MFC-1.After startup,the cyclic voltammetry tests were showed that MFC-2 biofilm had a higher electrochemical active behavior as the better mass transfer of serpentine flow filed.The above results lead to a 24.5% increase in maximal power density of MFC-2(2676.2mW-m-2) compared with MFC-1(2149.0 mW·m^(-2)).
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2014年第11期2294-2297,共4页 Journal of Engineering Thermophysics
基金 国家自然科学基金(No.51176212 No.51136007) 新世纪人才支持计划(No.NCET-11-0551)
关键词 阳极传质 三合一 微生物燃料电池 生物膜 anodic mass transfer membrane electrode assembly microbial fuel cell biofilm
  • 相关文献

参考文献8

  • 1张培远,刘中良,侯俊先.外阻对微生物燃料电池性能的影响[J].工程热物理学报,2012,33(10):1777-1780. 被引量:8
  • 2张培远,刘中良,熊亚选,蒋文明,冯亮.产电对微生物燃料电池参数的影响[J].工程热物理学报,2011,32(4):671-674. 被引量:6
  • 3张亮,李俊,朱恂,廖强,付乾,王永忠,叶丁丁.交指型阴极流场的微生物燃料电池性能[J].工程热物理学报,2010,31(9):1578-1580. 被引量:4
  • 4付乾,李俊,廖强,朱恂,丁玉栋.过硫酸钾为电子受体的微生物燃料电池性能特性[J].工程热物理学报,2009,30(8):1396-1398. 被引量:8
  • 5Liang Zhang,Xun Zhu,Jun Li,Qiang Liao,Dingding Ye.Biofilm formation and electricity generation of a microbial fuel cell started up under different external resistances[J].Journal of Power Sources.2011(15)
  • 6Scott R. Higgins,Daniel Foerster,Andrea Cheung,Carolin Lau,Orianna Bretschger,Shelley D. Minteer,Ken Nealson,Plamen Atanassov,Michael J. Cooney.Fabrication of macroporous chitosan scaffolds doped with carbon nanotubes and their characterization in microbial fuel cell operation[J].Enzyme and Microbial Technology.2011(6)
  • 7Jun Li,Qian Fu,Xun Zhu,Qiang Liao,Liang Zhang,Hong Wang.A solar regenerable cathodic electron acceptor for microbial fuel cells[J].Electrochimica Acta.2009(7)
  • 8César I.Torres,AndrewKato Marcus,Bruce E.Rittmann.Proton transport inside the biofilm limits electrical current generation by anode‐respiring bacteria[J].Biotechnol Bioeng.2008(5)

二级参考文献23

  • 1黄霞,范明志,梁鹏,曹效鑫.微生物燃料电池阳极特性对产电性能的影响[J].中国给水排水,2007,23(3):8-13. 被引量:71
  • 2Rabaey K, Lissens G, Siciliano S D, et al. A Microbial Fuel Cell Capable of Converting Glucose to Electricity at High Rate and Efficiency. Biotechnol. Lett., 2003, 25: 1531-1535.
  • 3Rhoads A, Beyenal H, Lewandowski Z. Microbial Fuel Cell using Anaerobic Respiration as an Anodic Reaction and Biomineralized Manganese as a Cathodic Reactant. Environ. Sci. Technol., 2005, 39:4666-4671.
  • 4You Shijie, Zhao Qingliang, Zhang Jinna, et al. A Microbial Fuel Cell Using Permanganate as the Cathodic Electron Acceptor. Journal of Power Sources, 2006, 162: 1409-1415.
  • 5Tartakovsky B and Guiot S R. A Comparison of Air and Hydrogen Peroxide Oxygenated Microbial Fuel Cell Reactors. Biotechnol. Prog., 2006, 22:241-246.
  • 6Lovely D R, Phillips E J P. Novel Mode of Microbial Energy Metabolism: Organic Carbon Oxidation Coupled to Dissimilatory Reduction of Iron or Manganese. Appl. Environ. Microbiol., 1988, 54(6): 1472-1480.
  • 7Kim J R, Min B, Logan B E. Evaluation of Procedures to Acclimate A Microbial Fuel Cell for Electricity Production [J]. Appl. Microbiol. Biotechnol., 2005, 68:23 30.
  • 8He Z, Minteer S D, Angenent L T. Electricity Generation from Artificial Wastewater using An Upflow Micro- bial Fuel Cell [J]. Environ Sci. Technol., 2005, 39:5262 -5267.
  • 9Logan B E. Simultaneous Wastewater Treatment and Bi- ological Electricity Generation [Jl. Water Sci. Technology, 2005, 52(1/2): 31 37.
  • 10Rabaey K, Verhaege M. Microbial Fuel Cells: Novel Biotechnology for Energy Generation [J]. Trends Biotechnol., 2005, 23(6): 291- 298.

共引文献22

同被引文献8

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部