期刊文献+

高温叶片流热固耦合分析及多目标多学科设计优化 被引量:3

Multi-Objective and Multi-Disciplinary Design Optimization of High Temperature Blade Based on Heat-Fluid-Solid Coupling Analysis
原文传递
导出
摘要 采用共轭换热分析方法,实现了C3X型高温叶片的流热固耦合分析,计算结果与实验数据的比较验证了数值方法的可靠性。结合自适应多目标差分进化算法、多目标概念的约束处理方法和三维叶栅自动参数化造型方法,自主开发了适用于高温叶片的自动多目标多学科优化设计平台。以C3X型叶片为参考叶片,选择总压恢复系数最大和叶片最高温度最低为目标进行优化设计。优化后获得了21个Pareto解。详细气热分析表明优化设计得到的叶片性能明显优于参考叶片,验证了所建立的高温叶片多学科设计平台的有效性。 Applying Conjugate Heat Transfer,the heat-fluid-solid coupling analysis of C3 X high temperature cascade was carried out.The calculation seems to be satisfactory in comparison with the experimental results.Combined with Self-adaptive Multi-objective Differential Evolution algorithm(SMODE) and 3D blade modeling method,a multi-objective and multi-disciplinary optimization platform of high temperature cascade was built.The profile of C3 X cascade was optimized for the maximization of the total pressure recovery coefficient and minimum of highest temperature within the cascade.21 Pareto solutions were obtained.By comparing aerodynamic analysis of optimization solutions,the optimal design shows a much better performance than that of the reference design.It demonstrates that the optimization platform has good performance and reliability.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2014年第12期2367-2371,共5页 Journal of Engineering Thermophysics
基金 国家自然科学基金资助项目(No.51106123) 高等学校博士学科点专项科研基金(新教师类 No.20100201120010)
关键词 高温叶片 流热固耦合 多目标 多学科设计优化 high temperature blade fluid-thermal-solid coupling multi-objective multi-disciplinary design optimization
  • 相关文献

参考文献2

二级参考文献3

共引文献48

同被引文献32

  • 1陈志鹏,袁新.透平级通流部分全设计变量多目标优化设计[J].航空动力学报,2009,24(5):1108-1113. 被引量:4
  • 2吴立强,尹泽勇,蔡显新.航空发动机涡轮叶片的多学科设计优化[J].航空动力学报,2005,20(5):795-801. 被引量:49
  • 3Lian Y, Oyama A, Liou M. Progress in Design Optimi- zation Using Evolutionary Algorithms for Aerodynamic Problems [J]. Progress in Aerospace Science, 2010, 46: 199-223.
  • 4Amaral S, Verstraete T, Van al. Design and Optimization Channels of a High Pressure Methodology[J]. Journal qf 132(2).
  • 5Den Braembussche R el of the Internal Cooling Turbine Blade, Part 1: Turbomachiner*', 2010, Verstraete T, Amaral S, Van den Braembussehe R, et al. Design and Optimization of the Internal Cooling Channels of a High Pressure Turbine Blade, Part I1: Op- timization [J]. Journal of Turbomachinery, 2010, 132 (3).
  • 6Song Y, Guo Z, Song L, et al. Multi-Objective and Multi-Disciplinary Optimization of Gas Turbine Blade Profile and Cooling System Using Conjugate Heat Trans- fer Analysis[ R]. ASME GT 2014-25495.
  • 7Shan S, Wang G G. Survey of Modeling and Optimiza- tion Strategies to Solve High-Dimensional Design Prob- lems with Computationally-Expensive Black-Box Func- tions [J]. Structural and Multidisciplinary Optimization, 2010, 41(2): 219-241.
  • 8Song L, Luo C, Li J, et al. Automated Multi-Objective and Multidisciplinary Design Optimization of a Transon- ic Turbine Stage [J]. Journal of Power and Energy, 2011, 226(2): 262-276.
  • 9Hylton L D, Mihelc M S, Turner E R, et al. Analytical and Experimental Evaluation of the Heat Transfer Distri- bution over the Surfaces of Turbine Vanes [RJ. NASA CR-174827, 1983.
  • 10杨俊杰,王荣桥,樊江,申秀丽.涡轮叶片的气动-热-结构多学科设计优化研究[J].航空动力学报,2010,25(3):617-622. 被引量:16

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部