期刊文献+

电机调相式大功率脉管制冷机研究 被引量:1

Study on High-Power Pulse Tube Cryocooler With Linear Motor Type Phase Adjuster
原文传递
导出
摘要 脉管制冷机出口阻抗对于脉管制冷机性能有着至关重要的影响。本文利用直线电机作为调相机构,通过调节电机外接负载调节制冷机出口阻抗,同时调相用直线电机回收制冷机出口膨胀功,转化成电能进行回收。基于经典热声理论计算了3 MPa下、工作频率60 Hz下,脉管制冷机的合理工作阻抗区域。而后通过实验测量了直线电机调相所实际提供的制冷机出口阻抗范围,并研究了整机在80 K下的制冷量与相对卡诺效率,同时分析了回收电功以及电机效率随电机负载的变化。最终,制冷机能够以最大29.5%的相对卡诺效率获得119 W制冷量。最大制冷量为154 W,此时直线电机能回收220 W电能。 The outlet impedance of the pulse tube cryocooler has a crucial influence on the performance of cryocooler. In this paper, a linear motor is used as a phase adjuster mechanism to adjust the outlet impedance of the cryocooler by adjusting the external load of the motor, at the same time, the linear motor is also used to recover the expansion work of the cryocooler and transform into electric energy for recovery. Based on the classical thermoacoustic theory, the reasonable operating impedance region of the cryocooler under 3 MPa and working frequency 60 Hz is calculated. After that, the output impedance range of the cryocooler provided by the linear motor phase adjuster is measured. The cooling capacity and the relative Carnot efficiency of the whole system under 80 K are studied. Meanwhile, the change of the recovery power and motor efficiency with the external load of the motor is analyzed. In the end, the cryocooler can obtain a 119 W refrigeration capacity at a maximum of 29.5% relative Carnot efficiency. The maximum cooling capacity is 154 W, and the linear motor can recover 220 W power at this time.
作者 侯茗予 李林玉 吴张华 罗二仓 HOU Ming-Yu;LI Lin-Yu;WU Zhang-Hua;LUO Er-Cang(Key laboratory of Cryogenics,Chinese Academy of sciences,Beijing 100190, China;University of Chinese academy of Sciences,Beijing 100049, China)
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2019年第3期484-489,共6页 Journal of Engineering Thermophysics
基金 国家自然科学基金项目(No.51476183)
关键词 脉管制冷机 直线发电机 调相 阻抗 pulse tube cryocooler linear motor phase adjust impedance
  • 相关文献

参考文献3

二级参考文献33

  • 1张小斌,邱利民.双向进气型脉管制冷机的线性理论分析[J].低温工程,2006(5):17-21. 被引量:1
  • 2ZHU S W, WU P Y, CHEN P. Double Inlet Pulse Tube Refrigerator: an Important Improvement. Cryogenics, 1990, 30(6): 515- 520.
  • 3Kanao K, Watanabe N, Kanazawa Y. A Miniature Pulse Tube Refrigerator for Temperature Below 100 K. Cryogenics, 1994, 3(ICEC 15 Suppl.): 167-170.
  • 4Radebaugh R, Lewis M, Luo E. Inertance Tube Opti- mization for Pulse Tube Refrigerators. Adv. Cryo. Eng., 49(B): 1269 -1276.
  • 5Swift G W. Thermoacoustics: A Unifying Perspective for some Engines and Refrigerators. Sewickley PA: ASA Publication, 2002.
  • 6XIAO J H. Thermoacoustic Heat Transportation and En- ergy Transformation Part 3: Adiabatic Wall Thermoa- coustic Effects. Cryogenics, 1995. 35(1): 27- 29.
  • 7DAI W, LUO E C, ZHANG Y, et al. Detailed Study of a Traveling wave Thermoacoustic Refrigerator Driven by a Traveling wave Thermoacoustie Engine. J. Aeoust. Soc. Am., 2006, 119(5): 2686-2692.
  • 8Luo E C, radebaugh R, Lewis M. Inertance Tube Models and Their Experimental Verification. Advances in Cryogenic Engineering, 2004, 49(B): 1485-1492.
  • 9Zia J H. A Commercial Pulse Tube Cryocooler with 200 W Refrigeration at 80 K. In: Ross, R G. Cryocoolers13. New York: Springer Science g~ Business Media Inc., 2004, 165-171.
  • 10Tanchon J, Trollier T, Ravex A, et al. Prototyping a Large Capacity High Frequency Pulse Tube Cryocooler. In: Ross, R G. Cryocooler14. Boulder: ICC Inc., 2007, 133- 139.

共引文献4

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部