摘要
本文讨论了一类非线性广义Sine-Gordon扰动方程,基于渐近理论得到对应方程的时滞初值问题并求出渐近解析解.首先,利用Fourier变换方法得出外部解.其次,按时滞变量展开扰动函数,再根据摄动方法和理论求出强阻尼时滞扰动广义SineGordon方程初值问题的的渐近解.根据本文的理论和方法得到的渐近解是解析的表示式,能够进行解析运算,从而可得到相关的物理量的性状,扩大了问题的讨论范围.
In this paper, a class of nonlinear generalized Sine-Gordon disturbed equation is considered. From the asymptotic theory, the asymptotic analytic solution to corresponding equation time delay initial value problem is solved. Firstly, the outer solution is found by using the Fourier transform method. Secondly, the disturbed function is developed from the time delay variable. Then, the uniformly valid solution to the strong damping time delay disturbed generalized Sine-Gordon equation initial value problem is obtained by the perturbation method and theory. Moreover, the asymptotic solution is an analytic expansion, and able to do analytic operation. Therefore, the corresponding physical characters are derived, and application ?elds are enlarged.
作者
冯依虎
汪维刚
莫嘉琪
FENG Yi-hu;WANG Wei-gang;MO Jia-qi(Department of Electronics and Information Engineering,Bozhou College,Bozhou 236800;Department of Mathematics,Shanghai University,Shanghai 200436;Department of Basic,Hefei Preschool Education College,Hefei 230011;School of Mathematics and Statistics,Anhui Normal University,Wuhu 241003)
出处
《工程数学学报》
CSCD
北大核心
2019年第2期179-186,共8页
Chinese Journal of Engineering Mathematics
基金
国家自然科学基金(11202106)
安徽省教育厅自然科学重点基金(KJ2017A702
KJ2017A704
KJ2017A901
KJ2018A0964)
安徽省高校优秀青年人才支持计划重点项目(gxyqZD2016520)
亳州学院教学研究重点项目(2017zdjy02)
亳州学院自然科学研究重点项目(BYZ2017B02)~~
关键词
非线性
扰动
强阻尼
nonlinear
perturbation
strong damp