摘要
以对收益条件方差建模的GARCH族波动率模型,及对高频已实现波动建模的HAR族波动率模型为考察对象,采用滚动时间窗的样本外预测,结合具有Bootstrap特性的SPA检验法,分别使用4种常用的损失函数作为评价指标,比较了13种常用波动率模型对沪深300指数短期、中期、长期波动率的预测精度。实证结果表明,对数形式的HAR-RV-CJ模型对短期、中期、长期波动率的样本外预测都具有最高的精度,且对长期波动率预测的优势最为显著;对收益条件方差建模的GARCH族模型即便加入已实现波动作为附加解释变量,其预测精度仍无法超越对已实现波动直接建模的HAR族模型。
This paper takes GARCH-family volatility models which model asset returns' conditional variance and HARfamily volatility models which model high-frequency realized volatility into consideration,comparing 13 commonly used volatility models' out-of-sample forecasting performances for short-term,middle-term and long-term volatilities through moving windows and a bootstrap SPA test under 4commonly used loss functions.Empirical results indicate that,the logarithmic transformed HAR-RV-CJ model has the best out-of-sample forecasting performance for short-term,middle-term and long-term volatilities and the advantage for long-term volatility forecasting is the most significant;while the GARCHfamily models' forecasting performances are normally worse than the HAR-family models even if the lagged realized volatility is included as explanatory variable.
出处
《系统工程》
CSSCI
CSCD
北大核心
2015年第3期32-37,共6页
Systems Engineering
基金
国家自然科学基金资助项目(71201075)
江苏省自然科学基金资助项目(BK2011561)
高等学校博士学科点专项科研基金资助项目(20120091120003)
教育部留学回国人员科研启动基金资助项目