期刊文献+

半焦基类石墨烯材料的制备及其光催化CO_2/H_2O制甲醇性能研究 被引量:4

The Preparation of Semi-Coke Based Porous Graphene Materials and Performance of Photocatalytic Properties
下载PDF
导出
摘要 本文以神府半焦焦粉为原料,综合采用化学氧化、冷冻干燥与高温碳化等方法,制备出半焦基类石墨烯材料。通过扫描电镜(SEM)、氮气吸附测试、傅立叶红外光谱仪(FTIR)对该半焦基类石墨烯材料的形貌结构进行了表征分析,并以单位时间内光催化还原CO_2/H_2O合成甲醇的产量评价了所制得样品的光催化性能。结果表明:半焦基类石墨烯材料不仅具有发达的孔隙结构与分布均匀的层片结构,同时表现出优异的光催化活性。以半焦基类石墨烯为光催化剂在紫外光照条件下,甲醇产量可达57.32μmol/g·cat,接近于相同条件下以TiO_2作为光催化剂时的甲醇产量。 In this paper, semi-coke based porous graphene which use the semi-coke as the raw material were prepared by chemical oxidation, freeze drying and high temperature. The morphologies and structures of the samples were analyzed by SEM, nitrogen adsorption, and FTIR. We use the output of methanol in unit time by photocatalytic CO2 reduction to evaluate the photocatalytic properties of semi-coke based porous graphene. The results indicated that the semi-coke based porous graphene materials have distributed evenly lamellar structure, high specific surface area and conjugate structure. The cumulative output of methanol is 57.32μmol/g·cat when we use semi-coke based porous graphene materials as the photocatalyst, the output is close to the methanol production when TiO2 is used as photocatalyst.
作者 张亚婷 张婧 韩静静 李可可 张凯博 贾凯丽 龙雪颖 Zhang Yating;Zhang Jing;Han Jingjing;Li Keke;Zhang Kaibo;Jia Kaili;Long Xueyin(School of Chemistry and Chemical Engineering,Xi’an University of Science and Technology,Xi’an 710054;Key Laboratory of Coal Resources Exploration and Comprehensive Utilization,Ministry of Land and Resources,Xi’an 710021,China)
出处 《广东化工》 CAS 2019年第5期16-17,29,共3页 Guangdong Chemical Industry
基金 国土资源部煤炭勘查与综合利用重点实验室(项目编号:KF2016-4)
关键词 半焦 半焦基类石墨烯材料 光催化还原CO2 semi-coke semi-coke based porous graphene materials photocatalytic CO2 reduction
  • 相关文献

参考文献3

二级参考文献47

  • 1Lacis A A, Schmidt G A, Rind D, et al. Atmospheric CO2: Principal control knob governing Earth's temperature[J]. Science, 2010, 330(6002): 356-359.
  • 2Das S, Daud W M A W. A review on advances in photocatalysts towards CO2 conversion[J]. Rsc Advances, 2014, 4(40): 20856-20893.
  • 3Sastre F, Puga A V, Liu L, et al. Complete photocatalytic reduction of CO2 to methane by H2 under solar light irradiation[J]. Journal of the American Chemical Society, 2014, 136(19): 6798-6801.
  • 4Taheri Najafabadi A. CO2 chemical conversion to useful products: an engineering insight to the latest advances toward sustainability[J]. International Journal of Energy Research, 2013, 37(6): 485-499.
  • 5Machado B F, Serp P. Graphene-based materials for catalysis[J]. Catalysis Science & Technology, 2012, 2(1): 54-75.
  • 6Liu W, Cai J, Ding Z, et al. TiO2/RGO composite aerogels with controllable and continuously tunable surface wettability for varied aqueous photocatalysis[J]. Applied Catalysis B: Environmental, 2015, 174: 421-426.
  • 7Fechete I, Wang Y, Védrine J C. The past, present and future of heterogeneous catalysis[J]. Catalysis Today, 2012, 189(1): 2-27.
  • 8Tang Z, Shen S, Zhuang J, et al. Noble-metal- promoted three-dimensional macroassembly of single-layered graphene oxide[J]. Angewandte Chemie, 2010, 122(27): 4707-4711.
  • 9Fan X, Manchon M G, Wilson K, et al. Coupling of Heck and hydrogenation reactions in a continuous compact reactor[J]. Journal of Catalysis, 2009, 267(2): 114-120.
  • 10William S, Hummers J R, Offeman R E. Preparation of graphitic oxide[J]. J Am Chem Soc, 1958, 80(6): 1339.

共引文献16

同被引文献32

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部