期刊文献+

Effects of generally anisotropic crustal rocks on fault-induced displacement and strain fields

Effects of generally anisotropic crustal rocks on fault-induced displacement and strain fields
下载PDF
导出
摘要 We present a new solution for the elastic displacement and strain fields on or near Earth’s surface due to rectangular faults in an anisotropic half-space,expressed as a summation of(A)the solution in an infinite space which is singular,and(B)the complementary part which is regular and well-behaved.These two solutions are expressed in terms of the mathematically elegant and computationally powerful Stroh formalism and can be applied to the generally anisotropic rock half-space or a transversely isotropic rock mass with any oriented plane of isotropy.For any flat fault of polygonal shape,one needs only to carry out a simple line integral from 0 to 7 r in order to express the fault-induced response.Numerical examples are presented to demonstrate the significant effect of the rock anisotropy and layer orientation on the fault-induced displacement and strain fields in anisotropic rocks.Potential applications are wide ranging,from faults in sedimentary strata to strongly deformed metamorphic rocks with steeply dipping foliation. We present a new solution for the elastic displacement and strain fields on or near Earth’s surface due to rectangular faults in an anisotropic half-space,expressed as a summation of(A)the solution in an infinite space which is singular,and(B)the complementary part which is regular and well-behaved.These two solutions are expressed in terms of the mathematically elegant and computationally powerful Stroh formalism and can be applied to the generally anisotropic rock half-space or a transversely isotropic rock mass with any oriented plane of isotropy.For any flat fault of polygonal shape,one needs only to carry out a simple line integral from 0 to 7 r in order to express the fault-induced response.Numerical examples are presented to demonstrate the significant effect of the rock anisotropy and layer orientation on the fault-induced displacement and strain fields in anisotropic rocks.Potential applications are wide ranging,from faults in sedimentary strata to strongly deformed metamorphic rocks with steeply dipping foliation.
出处 《Geodesy and Geodynamics》 2019年第5期394-401,共8页 大地测量与地球动力学(英文版)
基金 the China Scholarship Council(CSC) for supporting her visit at the University of Akron
关键词 GEOMECHANICS Rock ANISOTROPY BEDDING plane Deformation and strain FIELDS Mechanics theory and modelling Geomechanics Rock anisotropy Bedding plane Deformation and strain fields Mechanics,theory,and modelling
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部