摘要
Wave energy is an important renewable energy source. Previous studies of wave energy conversion(WEC) have focused on the maximum power take-off(PTO) techniques of a single machine. However, there is a lack of research on the energy and power quality of wave farm systems. Owing to the pulsating nature of ocean waves and popular PTO devices, the generated electrical power suffers from severe fluctuations. Existing solutions require extra energy storage and overrated power converters for wave power integration. In this study, we developed a master-slave wave farm system with rotor inertia energy storage; this system delivers self-smoothed power output to the grid and reduces the number of converters. Two control methods based on the moving average filter(MAF) and energy filter(EF) are proposed to smooth the output power of wave farms. RTDS simulations show that the proposed systems and control methods facilitate simple and smooth grid integration of wave energy.
Wave energy is an important renewable energy source. Previous studies of wave energy conversion(WEC) have focused on the maximum power take-off(PTO) techniques of a single machine. However, there is a lack of research on the energy and power quality of wave farm systems. Owing to the pulsating nature of ocean waves and popular PTO devices, the generated electrical power suffers from severe fluctuations. Existing solutions require extra energy storage and overrated power converters for wave power integration. In this study, we developed a master-slave wave farm system with rotor inertia energy storage; this system delivers self-smoothed power output to the grid and reduces the number of converters. Two control methods based on the moving average filter(MAF) and energy filter(EF) are proposed to smooth the output power of wave farms. RTDS simulations show that the proposed systems and control methods facilitate simple and smooth grid integration of wave energy.
基金
supported by EPSRC under Grant EP/ L017725/1 and Grant EP/N032888/1