摘要
Developing non-expensive, highly active and highly stable electrocatalysts for hydrogen evolution has aroused extensive attention, owing to the necessity of novel clean and sustainable energy carriers. In this paper, we report a synthesis of free-standing three-dimensional hierarchical MoS_2/CoS_2 heterostructure arrays through a convenient process. The investigation of electrocatalytic HER performance suggests that the MoS_2/CoS_2 hybrid catalyst exhibits significant enhancement in HER(onsetpotential and potential at a current density of 100 mA cm^(-2) are 20 mV and125 mV, respectively) and superior durability(no shift of current density is observed after a continuous scanning of 3000 times) compared with individual CoS_2 and MoS_2. The superior HER performance was attributed to the formation of the interface between CoS_2 and MoS_2 through the electrochemical characterization, Raman, XPS analysis, and the control experiment. The lower onsetpotential, higher current density, excellent durability, and the free-standing structure of the three-dimensional hierarchical MoS_2/CoS_2 heterostructure array make it a promising cathode catalyst suitable for widespread application.
Developing non-expensive, highly active and highly stable electrocatalysts for hydrogen evolution has aroused extensive attention, owing to the necessity of novel clean and sustainable energy carriers. In this paper, we report a synthesis of free-standing three-dimensional hierarchical MoS_2/CoS_2 heterostructure arrays through a convenient process. The investigation of electrocatalytic HER performance suggests that the MoS_2/CoS_2 hybrid catalyst exhibits significant enhancement in HER(onsetpotential and potential at a current density of 100 mA cm^(-2) are 20 mV and125 mV, respectively) and superior durability(no shift of current density is observed after a continuous scanning of 3000 times) compared with individual CoS_2 and MoS_2. The superior HER performance was attributed to the formation of the interface between CoS_2 and MoS_2 through the electrochemical characterization, Raman, XPS analysis, and the control experiment. The lower onsetpotential, higher current density, excellent durability, and the free-standing structure of the three-dimensional hierarchical MoS_2/CoS_2 heterostructure array make it a promising cathode catalyst suitable for widespread application.
基金
supported by the National Natural Science Foundation of China (Grant No.:51503062, 51402100, 21573063 and 21573066)
the Youth 1000 Talent Program of China
the Fundamental Research Funds for the Central Universities
Inter-discipline Research Program of Hunan University