期刊文献+

匿名用户的网络浏览特征挖掘 被引量:3

WEB BROWSING FEATURE MINING OF AN ANONYMOUS USER
下载PDF
导出
摘要 在网络使用挖掘 (web usage m ining)中 ,分析用户的行为模式是一个关键的问题 ,尤其对于匿名用户特征挖掘更有实际意义 ,首先介绍如何从网络使用数据 (web usage data)中提取出会话 (session)信息 ,接着讨论会话的特征抽取和特征空间 (feature space)的表述方式 ,并以此为基础提出了一种建立在会话特征信息上的匿名用户的网络浏览特征挖掘方法算法 ,这种算法在提高精确性的基础上减少了计算耗费 ,可以较好地解决路径的变长。 Analysing a user's behaviour pattern based on his interacting with a website is a key problem in web usage mining, especially to an anonymous user. First discussed in this paper is how to extract session information from web usage data, and then introduced is the session feature extracting and feature space description. Based on these, a highly efficient web browsing feature mining algorithm of an anonymous user is proposed. This algorithm reduces the computation consumption based on enhancing the accuracy. It may solve these questions well such as change path length, the directivity and dynamic clustering.
出处 《计算机研究与发展》 EI CSCD 北大核心 2002年第12期1758-1763,共6页 Journal of Computer Research and Development
基金 国家自然科学基金重点项目基金资助 (6993 3 0 10 )
关键词 匿名用户 网络浏览特征挖掘 会话 特征提取 特征空间 模式发现 计算机网络 web usage mining, session, feature extracting, feature space, pattern discovery
  • 相关文献

参考文献2

二级参考文献4

  • 1Ling C X,KDD’98,1998年
  • 2Chen M S,Proc 16th Int Conf Distributed Computing Systems,1996年,385页
  • 3Park J S,ACM Int Conf Management of Data,1995年
  • 4Yan T W,Computer Networks ISDN Systems,1996年,28卷,1期,1007页

共引文献50

同被引文献42

  • 1郭岩,白硕,杨志峰,张凯.网络日志规模分析和用户兴趣挖掘[J].计算机学报,2005,28(9):1483-1496. 被引量:62
  • 2ShuChing Chen. Identifying topics for Web Documents through fuzzy association learning[J]. International Journal of Computational Intelligence and Applications, 2002, 2(3) : 277-285.
  • 3Arash Rakhshan, Lawrence B Holder, Diane J Cook. Structural Web search engine[J].Intemational Journal on Artificial Intelligence Tools, 2004,13 (1): 27-44.
  • 4Diane J Cook, Nitish Manocha, Lawrence B Holder. Using a graph-based data mining system to perform web search[J] .International Journal of Pattern Recognition and Artificial Intelligence, 2003,17(5): 705-720.
  • 5Supriya Kumar D E, Radha Krishna E Mining Web data usingclustering technique for Web personalization [J]. International Journal of Computational Intelligence and Applications, 2002, 2(3): 255-265.
  • 6CHEN Yu-ru, HUNG Ming-chuan, Don-lin YANG. Using data mining to construct an intelligent web search system[J]. International Journal of Computer Processing of Oriental Languages,2003,16 (2):143-170.
  • 7Gordon S Linoff,Michael J A Berry.Mining the web:transforming customer data into customer value[M].北京:电子工业出版社.2004.
  • 8Wen Gao, Shi Wang,Bin Liu. A dynamic recommendation system based on log mining[J]. International Journal of Foundation of Computer Science, 2002,13 (4): 521-530.
  • 9Cooley R W. Web usage mining: Discovery and application of interesting patterns from Web data[D]. USA:University of Minnesota, 2000.
  • 10Dorigo M, Maniezzo V, Colorni A. The ant system: An autocatalytic optimizing process[R]. Politecnico di Milano,Italy,1991.91-106.

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部