期刊文献+

基于VB环境的砂轮智能选择系统开发 被引量:3

VB Based Intelligent System Development for Selection of Grinding Wheels
下载PDF
导出
摘要 提出用模糊自适应调整BP算法建立磨削条件与砂轮特征参数之间的关系模型;并依据磨削数据手册中的数据及实验结论对模型进行训练,训练好的神经网络可实现砂轮型号的智能推荐;测试结果显示模糊自适应BP网络比原BP网络收敛速度快、识别准确率高·该方法具有不依赖经验工人,无需要建立规则,利用最新的研究结果可随时训练网络,具有很好的扩展性等优点·利用VB和Matlab语言相结合的方法开发本系统,开发过程方便快捷,并具友好的用户界面· ?The fuzzy adaptive BP neural network was proposed to build the relationship model between grinding conditions and main character parameters of a grinding wheel. The model was trained by the samples from 'Grinding Data Book' and experiment data. The trained networks model can be used to recommend suitable grinding wheel type for the given grinding conditions. The testing results indicate that the fuzzy adaptive network has faster convergence speed and higher accuracy than the standard BP network does. This method is independent on skilled workers, and has good expansibility. It need no rules, and can retrain the network by new research results.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2002年第12期1181-1184,共4页 Journal of Northeastern University(Natural Science)
基金 教育部科学技术研究重点项目(200032)
关键词 智能选择系统 开发 磨削 砂轮 BP神经网络 VB环境 模糊自适应算法 grinding grinding wheel fuzzy adaptive BP neural network VB environment
  • 相关文献

参考文献10

  • 1[1]Midha P S, Zhu C B,Trmal G J. An expert system for wheel selection for cylindrical grinding operation[A]. Proceedings of 6th Internat ional Conference on Computer Aided Production Engineering[C]. London, 1990. 445-450.
  • 2[2]Li Y, Mills B,Rowe W B. An intelligent system for selecti on of grinding wheels[J]. Journal of Engineering Manufacture, 1997,211( B8):635-641.
  • 3[3]Lezanski P. An intelligent system for grinding wheel cond ition monitoring[J]. Journal of Materials Processing Technology, 2001,109: 258-263.
  • 4[4]Tnshoff H K, Kaarpuschewski B, Mandysch T, et al. G rinding process achievements and their consequences on machine tool challenges a nd opportunities[J]. Annals of the CIRP, 1998,47(2):651-668.
  • 5[5]Varghese B, Parhare S, Gao R, et al. Development of asensor-integrated "intelligent" grinding wheel for in-process monitoring[J ]. Annals of the CIRP, 2000,49(1):231-234.
  • 6[6]Zhu CB, Midha P S,Trmal G J. Development of knowledge base abrasive wheel selection system using a proprietary expert system shell[A]. Proceedings of 4th International Congress on Condition Monitoring and Diagnost ic Engineering Manufacturing[C]. Selis, 1992.318-325.
  • 7[7]Chen Y T, Kumara S. Fuzzy logic and neural networks for design of process parameters: a grinding process application[J]. Int J Prod R es, 1998,36(2):395-415.
  • 8[8]Yan L, Mills B, Rowe W B. An intelligent system for selection of grinding wheel[J]. Proceedings of the Institution of Mechanical Engi neers Part B: Journal of Engineering Manufacture, 1997,211(B8):635-641.
  • 9[9]Grinding Data Book. Universal Grinding Wheel Company Limited, 1992.
  • 10[10]Rowe W B, Yan L, Chen X,et al. An intelligent multiagent approach for selection of grinding condition[J]. Annals of the CIRP, 1997 ,46(1):233-238.

同被引文献22

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部