摘要
主要研究了受非线性支承的板状梁结构的流致振动问题。采用二维不可压缩粘性流体模型 ,建立了板状梁运动的偏微分方程 ,并应用Galerkin方法把此偏微分方程转化成了常微分方程 ;以流体流速作为变化参数 ,运用稳定性理论分析了平衡点附近定常解的稳定性问题 ;应用WATLAB软件对该方程进行了数值模拟 ,其结果与理论分析所求得的临界流速数值完全一致 ;
The flow-induced vibration of a plate-type beam structure with nonlinear support is studide in this paper.Adopting the assumption of two dimensional incompressible viscous flow,the bias differential equations of the structure are set up,and applying Galerkin Mehod,the bias differential equations are transferred into ordinary ones.Taking the fluid velocity as changing parameter,the stability of steady-state solution near the equilibrium points is analyzed by using Theory of Stability.The equation is simulated by MATLAB and the results are coincidental with that of theoretical analysis.At last the effects of vibration under critical velocity and varying initial conditions are analyzed.
出处
《河北理工学院学报》
2002年第4期105-113,共9页
Journal of Hebei Institute of Technology
基金
国家自然科学基金 ( 1 9870 5 8)
教育部<高等学校骨干教师资助计划>资助项目
关键词
非线性支承
板状梁结构
流致振动
稳定性分析
nonlinear support
plate-type structure
flow-induced vibration,stability analysis