期刊文献+

一种基于分布式数据库的全局频繁项目集更新算法 被引量:4

Algorithm based on distributed database for updating global frequent itemsets
下载PDF
导出
摘要 在算法FMAGF的基础上 ,提出了一种基于分布式数据库的全局频繁项目集更新算法———UAGFI,该算法主要考虑最小支持度发生变化时全局频繁项目集的更新情况 .UAGFI在最坏的情况下仅须扫描各局部数据库一遍 ,并利用已挖掘的结果 ,可避免传送某些原全局频繁项目对应的条件频繁模式树 ,从而降低网络通讯代价 .实验结果表明 。 A new algorithm UAGFI (updating algorithm of global frequent itemsets based on distributed database) is introduced, it considers the updating of global frequent itemsets when dynamically adjusting minimum support measure threshold. In the worst case, UAGFI only scans every local transaction database once and can avoid transmitting some conditional pattern tree and/or base of original global frequent item by utilizing mined results. Therefore, UAGFI uses far less communication overhead and obviously improves updating efficiency of global frequent itemsets. Experimental results show that UAGFI algorithm is efficient and effective.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2002年第6期879-883,共5页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目 ( 79970 0 92 ) 安徽省自然科学基金资助项目 ( 0 30 4 2 2 0 5)
关键词 算法 数据挖掘 分布式数据库 全局频繁项目集 频繁模式树 更新 UAGFI Algorithms Distributed database systems
  • 相关文献

参考文献4

二级参考文献10

  • 1RAgrawa1 TImie1inSki Aswami.Mining association ru1es between sets of items in 1arge database[J].The ACM SIGMOD Intemationa1 Conf on Management of Data, Washington, DC,1993,.
  • 2Brin S,Motwanti R,Ullman J et al. Dynamic itemset counting and implication rules for market basket data[C].In:Proceedings of the Intemational Conference on Management of Data,1997:255~264
  • 3Brin S,Motwanti R,Silverstein C.Beyond market baskets:generalizing association rules to correlations[C].In:Proceedings of the ACM SIG MOD international Conference on Management of Data,1997:265~276
  • 4Agrawal R,ImielinSki T,Swami A.Mining association rules between sets of items in large database[C].Proceeding of the ACM SIGMOD International Conference on Management of Data, 1993:207~216
  • 5Agrawal R,Srikant R.Fast algorithm for mining association rules[C].In :Proceedings of the 1994 International Conference on Very Large Data Bases,Santiago,Chile: 1994:487~499
  • 6冯玉才,冯剑琳.关联规则的增量式更新算法[J].软件学报,1998,9(4):301-306. 被引量:227
  • 7肖利,金远平,徐宏炳,王能斌.基于多维标度的快速挖掘关联规则算法[J].软件学报,1999,10(7):749-753. 被引量:16
  • 8马元元,孙志挥,高红梅.时态数据库中增量关联规则的挖掘[J].计算机研究与发展,2000,37(12):1446-1451. 被引量:9
  • 9路松峰,卢正鼎.快速开采最大频繁项目集[J].软件学报,2001,12(2):293-297. 被引量:113
  • 10欧阳为民,郑诚,蔡庆生.数据库中加权关联规则的发现[J].软件学报,2001,12(4):612-619. 被引量:96

共引文献270

同被引文献29

  • 1陈耿,倪巍伟,朱玉全,孙志挥.基于分布数据库的快速关联规则挖掘算法[J].计算机工程与应用,2006,42(4):165-167. 被引量:13
  • 2[1]Agrawal R, ImielinSki T, Swami A. Mining association rules between sets of items in large database[A]. Proceedings of the ACM SIGMOD International Conference on Management of Data[C]. Washington, DC, 1993. 207 - 216.
  • 3[2]Agrawal R, Srikant R. Fast algorithms for mining association rules[A]. Proceedings of the 20th International Conference Very Large Data Bases(VLDB' 94) [ C]. Santiago, Chile, 1994,487 - 499.
  • 4[5]Cheung D, Hah J, Ng V, et al. Maintenance of discovered association rules in large databases: an incremental updating technique[A]. Proceedings of the 12thInternational Conference on Data Engineering[C]. New Orleans, Louisiana, USA,1996.106- 114.
  • 5[6]Cheung S LEE, Kao B. A general incremental technique for maintaining discovered association rules[A]. Proceedings of the 5th International Conference on Database Systems for Advanced Applications[C]. Melbourne, Australia, 1997. 185 - 194.
  • 6[7]Han J W, Pei J, Yin Y. Mining frequent patterns without candidate generation[ A]. Proceedings of the ACM. SIGMOD International Conference on Management of Data[C]. Dallas,USA, 2000, 1 - 12.
  • 7[9]Pang - Ning Tan, Vipin Kumar, Jaideep Srivastava. Indirect association: Mining Higher Order Dependencies in Data[A].PKDD, 2000. 632 - 637.
  • 8[10]Pang- Ning Tan, Vipin Kumar. Mining Indirect Associations in Web Data[A]. WebKDD 2001: Mining Log Data Across All Customer TouchPoints[C], 2001.
  • 9Li Tao, M Ogihara, Zhu Shenghuo. Similarity testing between heterogeneous basket datasets. Computer Science Department,University of Rochester, Tech Rep: 781, 2002
  • 10Li Tao, Zhu Shenghuo, M Ogihara. A new distributed data mining model Based on Similarity. In: Proc of the 2003 ACM Symp on Applied Computing. New York: ACM Press, 2003. 432~ 436

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部