期刊文献+

采用隐式立方样条计算平流过程的数值模式及理想实验 被引量:1

A Numerical Model of Solving Advaction Equation by the Implicit Cubic Spline Method and the Numerical Experiments
下载PDF
导出
摘要 本文介绍了一种用隐式立方样条求解平流方程的数值方法,并从理论上对其无条件稳定性进行了证明,在此基础上建立了一个在地形坐标系下的两维原始方程模式,模式在行星边界层参数化中引入了湍流动能方程,在模式顶部引入了吸收层.数值实验表明:模式有较好的计算稳定性,对较高的模式水平分辨率和复杂地形均有较强的适应能力;对复杂地形和下垫面非均匀热源条件下中尺度系统的模拟能获得合理的结果,并具有较高的精确度. In this paper, an implicit cubic spline scheme is adopted to solve the advection equation. Its non-conditionally linear stability is proved. Based on this scheme, a two dimensional numerical model with an upper absorbing layer and a turbulent energy equation based on the turbulent closure have been developed in a terrain following coordinate.Several numerical experiments are carried out. The reasonable results show that the model is suitable for modeling and studying topographical forcing and induced mesoscale systems with sat -isfactory, accuracy, computational stability and flexibility for model's horizontal resolution and complex topography.
作者 肖锋 程麟生
出处 《大气科学》 CSCD 北大核心 1992年第5期538-547,共10页 Chinese Journal of Atmospheric Sciences
基金 国家自然科学基金
关键词 平流 立方样条 数值模式 大气 Adveetion equation Cubic splines Numerical model.
  • 相关文献

参考文献5

  • 1桑建国,大气科学,1988年,12卷,131页
  • 2桑建国,大气科学,1985年,9卷,226页
  • 3Chang L P,Mon Wea Rev,1982年,112卷,2025页
  • 4季仲贞,大气科学,1982年,6卷,88页
  • 5朱幼兰,初边值问题差分方法及绕流,1980年

同被引文献7

  • 1周斌斌.一类计算稳定性好的显式平流差分格式[J].大气科学,1995,19(2):252-256. 被引量:1
  • 2Richard W Boubel, Donald L Fox, Bruce Turner. Fundamentals of air pollution [M]. 3rd ed. San Diego: Academic Press, 1994.
  • 3Clive A J. Fletcher, Computational techniques for fluid dynamics, Vol.1: Fundamental and General Techniques [M]. Berlin: Springer Verlag, 1991.
  • 4Shi J, Toro E F. Fully discrete high order shock capturing numerical schemes [J]. International Journal for Numerical Methods in Fluids, 1996, 23:241-269.
  • 5Leonard B E Simple high accuracy resolution program for convective modeling of discontinuities [J], International Journal for Numerical Methods in Fluids, 1988, 8: 1291-1318.
  • 6Noye B J, Tan H H. Finite difference method for the two-dimensional convection diffusion equation [J]. International Journal for Numerical Methods in Fluids, 1989, 9: 75-98.
  • 7蒋维楣,孙鉴泞,曹文俊,等.空气污染气象学教程[M].北京:气象出版社.2004:134-139.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部