期刊文献+

基于机器学习股市收益影响因子实证研究

An Empirical Study on the Influencing Factors of Stock Market Returns Based on Machine Learning
原文传递
导出
摘要 本文通过对机器学习中Ada Boost算法的使用,分别对上证指数不同阶段的收益率中的财务数据进行特征学习,进而研究其不同阶段下的财务因子的影响力,该研究很好地展现了不同阶段下的影响因子的影响力的变化。无论在牛市、熊市、震荡市哪个阶段流通市值的影响力都位于总市值的前面,这个结论跟这几年在股市的表现非常一致,无论是之前中小创独牛还是后来大蓝筹疯狂,体现的是我A一大特点:炒新炒小的特点。 Based on the use of Ada Boost algorithm in machine learning, this paper studies the financial data in different stages of Shanghai Composite Index, and then studies the influence of financial factors under different stages. The research shows that The influence of influencing factors under different stages. Whether in the bull market, bear market, shock market which market capitalization of the market value of the influence are located in front of the total market value, this conclusion with the performance of the stock market in recent years is very consistent, whether it is before the small or only large blue-chip crazy I am a major feature of A: fried new fried small features.
作者 满奇
出处 《中国国际财经(中英文版)》 2016年第24期59-63,共5页 China International Business
关键词 机器学习 ADABOOST 股市 财务因子 machine learning AdaBoost stock market financial factor
  • 相关文献

参考文献2

二级参考文献11

  • 1Chellappa R,Wilson C L,Sirohey S.Human and machine recognition of faces:a survey[J].Digital Object Identifier,1995,83(5):705-741.
  • 2LI S Z,Zhang Z Q.FloatBoost learning and statistical face detection[J].IEEE Trans Pattern Analysis and Machine Intelligence,2004,28(9):1112-1123.
  • 3XIAO R,LI M J,ZHANG H J.Robust multipose face detection in images[J].IEEE Trans Circuits and System for Video Technology,2004,14(1):31-41.
  • 4Viola P,Jones M.Rapid object detection using a boosted cascade of simple features[C]∥Proc IEEE Conference on Computer Vision and Pattern Recognition.Kauai,Hawaii:[s.n.],2001:73-113.
  • 5WU J X,Brubaker S C,Rehg J M,et al.Fast asymmetric learning for cascade face detection[J].Digital Object Identifier,2008,3(30):369-382.
  • 6Kakumanu P,Makrogiannis S,Bourbakis N,et al.A survey of skin-color modeling and detection methods[J].Pattern Recognition,2007,40:1106-1122.
  • 7Chenaoua K,Bouridane A.Skin detection using a markov random field and a new color space[C]∥IEEE International Conference on Image Processing.Atlanta,GA:IEEE Press,2006:2673-2676.
  • 8Viola P, Jones M. Robust real-time face detection [ J ].International Journal of Computer Vision, 2004,57( 2 ): 137 -154.
  • 9Viola P, Jones M. Rapid object detection using a boosted cascade of simple features [ A ].In:IEEE Conference on CVPR'2001[ C ].Libue, Kauai, Hawaii, USA: IEEE Computer Society Press, 2001 : 511-518.
  • 10Freund Y, Schapire R E. A Decision-Theoretic Generalization of On-Line Learning and An Application to Boosting [J].Journal of Computer and System Sciences, 1997,55 (1):119-139.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部