期刊文献+

氮化钛纳米颗粒作为锂氧电池正极催化剂的电化学行为 被引量:1

Electrochemical behavior of TiN nanoparticles as the cathode catalyst for lithium-oxygen batteries
下载PDF
导出
摘要 采用直流电弧等离子体法在氮气和氢气气氛下制备氮化钛纳米颗粒,作为锂氧电池正极催化剂。通过透射电镜(TEM)、X射线衍射(XRD)等对材料进行微观结构表征,结果显示纳米氮化钛呈现立方结构,晶粒尺寸为30.00~60.00 nm,晶化程度良好。氮化钛纳米颗粒作为锂氧电池正极催化剂,电流密度为50 mA/g时,放电比容量达到3 037 mAh/g;在定容500 mAh/g,电流密度为75 mA/g时,电池可稳定循环,能量效率维持在62%左右。此外,充放电循环后电极片的XRD、SEM结果证明锂氧电池的主要反应为过氧化锂的生成与分解。 The titanium nitride nanoparticles were prepared by DC arc-discharge method and served as the cathode catalyst for lithium-oxygen batteries. Various analytical methods, including X-ray diffraction, Transmission Electron Microscopy and etc., are used to characterize the microstructure and morphology of the TiN nanoparticles. The results show that the TiN nanoparticles had a cubic structure with good crystallinity. Its grain size varied from 30 to 60 nm. The rotating disk electrode(RDE) test shows that the TiN nanoparticles had dual catalytic properties of both oxygen reduction reaction(ORR) and oxygen evolution reaction(OER). As the cathode catalyst for the lithium-oxygen batteries, the TiN electrode delivered 3 037 mAh/g discharge specific capacity at a current density of 50 mA/g. The energy efficiency of the battery could maintain in 62% at a limited capacity of 500 mAh/g and a current density of 75 mA/g. Furthermore, XRD and SEM results of the cycled TiN electrode show that the main reaction of lithium-oxygen batteries was the formation and decomposition of lithium peroxide.
作者 陈明珠 吴爱民 靳晓哲 秦振海 黄昊 CHEN Mingzhu;WU Aimin;JIN Xiaozhe;QIN Zhenhai;HUANG Hao(Key Laboratory of Energy Materials&Devices(Liaoning Province),School of Materials Science and Engineering,Dalian University of Technology,Dalian 116024,China)
出处 《功能材料》 EI CAS CSCD 北大核心 2019年第3期3001-3007,共7页 Journal of Functional Materials
基金 中央高校基本科研业务费重点实验室专项经费资助项目(DUT17ZD101) 国家自然科学基金资助项目(51171033 21233010) 常州工业支撑计划资助项目(CE20160022)
关键词 锂氧电池 氮化钛 纳米材料 正极 催化剂 lithium-oxygen battery titanium nitride nanomaterial cathode catalyst
  • 相关文献

参考文献5

二级参考文献139

  • 1NEDO次世代自动车用蓄电池技术开发RoadMap, http ://www. nedo. go. jp.
  • 2日経エレクトロニクス,日経AutomotiveTechnology,日経きのつくり日経力カィロデバィス共同编集,次世代電池.2010,日経BP出版社.
  • 3Zhou H S. Almaden Institute, 2009, http://ww, almaden. ibm. com/insfitute/2009/agenda, shtml.
  • 4Wang Y G, Zhou H S. Electrochemistry Communications, 2009,11 (9) :1834.
  • 5Wang Y G, Zhou H S. Journal of Power Sources, 2010,195 (1):358.
  • 6He P, Wang Y G, Zhou H S. Electrochemistry Communications, 2010,12 : 1686.
  • 7Zegers P, Journal of Power Sources,2006,154 (2):497.
  • 8Wadia C, Albertus P,Srinivasan V. Journal of Power Sources, 2011,196 (3):1593.
  • 9Zheng J P, Liang R Y, Hendrickson Met al. Journal of the Electrochemical Society, 2008,155 (6) : A432.
  • 10Abraham K M,Jiang Z. Journal of the Electrochemical Society,1996, 143(1):1.

共引文献36

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部