期刊文献+

开拓思维 高效解题——一道解析几何问题的多种解法

原文传递
导出
摘要 焦点三角形是指以椭圆(或双曲线)的焦距F1F2为底边,顶点P在椭圆(或双曲线)上的三角形.熟练掌握焦点三角形的性质,对培养创新能力和解题能力具有重要意义.例题双曲线x29-y216=1的焦点为F1、F2,点P在双曲线上,若PF1⊥PF2,则点P到x轴的距离为.分析设P(x0,y0),则|y0|就是点P到x轴的距离,故只需求出点P的纵坐标即可.解法1(辅助圆法)构造以焦点F1、F2为直径的辅助圆.由圆的知识可知,若点P在圆上,则F1PF2是直角三角形;若点P在圆内,则F1PF2是钝角三角形;若点P在圆外,则F1PF2是锐角三角形.
作者 魏天保
出处 《高中数学教与学》 2013年第11X期42-42,41,共2页
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部