期刊文献+

人工湿地/微生物燃料电池技术的发展现状 被引量:5

Current Status of Constructed Wetland/Microbial Fuel Cell
原文传递
导出
摘要 人工湿地技术(CW)和微生物燃料电池(MFC)处理技术都是通过微生物的作用去除污水中的污染物。微生物燃料电池的阳极区为厌氧环境、阴极区则为好氧环境,而氧化还原条件和氧化还原电位梯度在人工湿地填料层中可自然形成。因此,近几年兴起对这两种污水处理技术相结合的研究,由此开发了人工湿地/微生物燃料电池技术(CW/MFC)。虽然国内外对于CW/MFC的研究才刚起步,资料有限,但CW/MFC的雏形已经形成。在综述国内外已有的CW/MFC文献资料的基础上,提出这一环境友好型污水处理和潜能利用技术今后的研究方向及面临的挑战。 Constructed wetland( CW) and microbial fuel cell( MFC) are compatible technologies since both are reliant on the actions of bacteria to remove contaminants from wastewater. MFCs require the anode region to remain anaerobic with the cathode region exposed to oxygen while these redox conditions and gradients can develop naturally in CW. For this reason,research on combining the two technologies( termed as CW / MFC) has emerged in recent years. Based on the published work( although limited),the future challenges and research directions of the eco-friendly CW / MFC technololgy were put forward.
出处 《中国给水排水》 CAS CSCD 北大核心 2015年第17期129-136,共8页 China Water & Wastewater
基金 欧洲区域发展基金资助项目(ERDF) 爱尔兰高等教育署项目(PRTLI-5) 国家自然科学基金青年基金资助项目(41302208) 北京市节能减排协同创新中心项目
关键词 人工湿地 微生物燃料电池 污水处理 产电性能 constructed wetland microbial fuel cell wastewater treatment electricity generation
  • 相关文献

参考文献1

二级参考文献17

  • 1Wen Yue, Chen Yi, Zheng Nan, et al. Effects of Plant Biomass on Nitrate Removal and Transformation of Carbon Sources in Subsurface-flow Constructed Wetlands[J]. Bioresource Technology, 2010,101..7286-7292.
  • 2Ong Soon-An, Katsuhiro Uchiyama, Daisuke Inadama, et al. Performance Evaluation of Laboratory Scale Up-flow Construeted Wetlands with Different Designs and Emergent Plants[J]. Bioresource Technology, 2010,101: 7239-7244.
  • 3Liang Ming-qiu, Zhang Cheng-feng, Peng Chang-lian, et al. Plant Growth, Community Structure, and Nutrient Removal in Monoculture and Mixed Constructed Wetlands[J]. Ecological Engineering, 2011,37 : 309-316.
  • 4Liu H, Cheng S, Logan B. Power Generation in Fed-batch Microbial Fuel Ceils as a Function of Ionic Strength, Temperature, and Reactor Configuration[J]. Environment Science & Technology, 2005,39(14): 5488-5493.
  • 5Aelterman, Freguia P,Keller S, et al. The Anode Potential Regulates Bacterial Activity in Microbial Fuel Cells[J]. Microbiol Biot, 2010,78 : 409-418.
  • 6Wang Xin, Feng Yujie, Liu Jia, et al. Sequestration of CO2 Discharged from Anode by Algal Cathode in Microbial Carbon Capture Cells (MCCs) [J]. Biosensors and Bioelectronies, 2010,25: 2639-2643.
  • 7Pant,Bogaert D,Diels G V, et al. A Review of the Substrates Used in Microbial Fuel Cells (MFCs) for Sustainable Energy Production[J]. Bioresouce Technology, 2010,101: 1533-1543.
  • 8Logan B E. Scaling up Microbial Fuel Cells and Other Bioelectrochemical Systems[J]. Microbiol Biotechnol, 2010,85: 1665-1671.
  • 9Cheng Shaoan, Logan Bruce E. Increasing Power Generation for Scaling up Single-chamber Air Cathodemicrobial Fuel Cells[J]. Bioresource Technology,2011, 102:4468-4473.
  • 10Rosenbaum M, He Zhen, Largus T Angenent. Light Energy to Bioelectrieity: Photosynthetic Microbial Fuel Cells[J]. Current Opinion in Biotechnology,2010, 21:259-264.

共引文献12

同被引文献18

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部