摘要
As one of the most promising candidates for the third generation solar cells,quantum dots sensitized solar cells(QDSCs) have been comprehensively studied.In this work,we synthesize the CdSe QDs with the absorption range from 450-550 nm,which are suitable to be applied in the QDSCs.Then,we found that the self-assembly(SA) deposition method is superior to the successive ionic layer adsorption and reaction(SILAR) deposition method in the fabrication of the photo anodes.Furthermore,the influence of TiO_2's thickness of the photo anodes to the QDSCs' efficiency has been studied.With the optimized CdSe QDs sensitized photo anodes,the efficiency of the QDSCs can reach 3.38%in this work.
As one of the most promising candidates for the third generation solar cells,quantum dots sensitized solar cells(QDSCs) have been comprehensively studied.In this work,we synthesize the CdSe QDs with the absorption range from 450-550 nm,which are suitable to be applied in the QDSCs.Then,we found that the self-assembly(SA) deposition method is superior to the successive ionic layer adsorption and reaction(SILAR) deposition method in the fabrication of the photo anodes.Furthermore,the influence of TiO_2's thickness of the photo anodes to the QDSCs' efficiency has been studied.With the optimized CdSe QDs sensitized photo anodes,the efficiency of the QDSCs can reach 3.38%in this work.